
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3637410/publications.pdf Version: 2024-02-01

LEI-KE ZHANC

#	Article	IF	CITATIONS
1	Structure basis for inhibition of SARS-CoV-2 by the feline drug GC376. Acta Pharmacologica Sinica, 2023, 44, 255-257.	2.8	5
2	A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacologica Sinica, 2022, 43, 483-493.	2.8	43
3	Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Journal of Medicinal Chemistry, 2022, 65, 2794-2808.	2.9	52
4	Probing the Allosteric Inhibition Mechanism of a Spike Protein Using Molecular Dynamics Simulations and Active Compound Identifications. Journal of Medicinal Chemistry, 2022, 65, 2827-2835.	2.9	15
5	Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the spike protein. Acta Pharmacologica Sinica, 2022, 43, 788-796.	2.8	40
6	Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein and Cell, 2022, 13, 689-693.	4.8	136
7	CoVac501, a self-adjuvanting peptide vaccine conjugated with TLR7 agonists, against SARS-CoV-2 induces protective immunity. Cell Discovery, 2022, 8, 9.	3.1	12
8	Oral remdesivir derivative W116 is a potent inhibitor of respiratory syncytial virus with efficacy in mouse model. Signal Transduction and Targeted Therapy, 2022, 7, 123.	7.1	14
9	Ebola virus VP35 hijacks the PKA-CREB1 pathway for replication and pathogenesis by AKIP1 association. Nature Communications, 2022, 13, 2256.	5.8	11
10	Effect of genomic variations in severe fever with thrombocytopenia syndrome virus on the disease lethality. Emerging Microbes and Infections, 2022, 11, 1672-1682.	3.0	12
11	Comorbidities for fatal outcome among the COVID-19 patients: A hospital-based case-control study. Journal of Infection, 2021, 82, 159-198.	1.7	14
12	Longitudinal Profile of Laboratory Parameters and Their Application in the Prediction for Fatal Outcome Among Patients Infected With SARS-CoV-2: A Retrospective Cohort Study. Clinical Infectious Diseases, 2021, 72, 626-633.	2.9	15
13	High-Throughput Screening of an FDA-Approved Drug Library Identifies Inhibitors against Arenaviruses and SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1409-1422.	1.8	31
14	SARS-CoV-2 ORF9b inhibits RIG-I-MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO. Cell Reports, 2021, 34, 108761.	2.9	174
15	Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural and Molecular Biology, 2021, 28, 319-325.	3.6	104
16	Clinical effect and antiviral mechanism of T-705 in treating severe fever with thrombocytopenia syndrome. Signal Transduction and Targeted Therapy, 2021, 6, 145.	7.1	30
17	High-throughput screening identifies established drugs as SARS-CoV-2 PLpro inhibitors. Protein and Cell, 2021, 12, 877-888.	4.8	95
18	Activation of the STAT3 Signaling Pathway by the RNA-Dependent RNA Polymerase Protein of Arenavirus. Viruses, 2021, 13, 976.	1.5	1

#	Article	IF	CITATIONS
19	Comprehensive interactome analysis of the spike protein of swine acute diarrhea syndrome coronavirus. Biosafety and Health, 2021, 3, 156-163.	1.2	2
20	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	5.8	149
21	Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 2021, 12, 3623.	5.8	111
22	Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 Mpro. Signal Transduction and Targeted Therapy, 2021, 6, 214.	7.1	17
23	SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Research, 2021, 31, 847-860.	5.7	102
24	Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Acta Pharmacologica Sinica, 2021, , .	2.8	18
25	Decreased inhibition of exosomal miRNAs on SARS-CoV-2 replication underlies poor outcomes in elderly people and diabetic patients. Signal Transduction and Targeted Therapy, 2021, 6, 300.	7.1	44
26	Design and development of an oral remdesivir derivative VV116 against SARS-CoV-2. Cell Research, 2021, 31, 1212-1214.	5.7	71
27	A pathogen-like antigen based vaccine confers immune protection against SARS-CoV-2 in non-human primates. Cell Reports Medicine, 2021, 2, 100448.	3.3	11
28	Development of horse neutralizing immunoglobulin and immunoglobulin fragments against JunÃn virus. Antiviral Research, 2020, 174, 104666.	1.9	14
29	Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 2020, 41, 1167-1177.	2.8	314
30	Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2. Protein and Cell, 2020, 11, 723-739.	4.8	129
31	Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery, 2020, 6, 54.	3.1	96
32	Decreased HD-MIR2911 absorption in human subjects with the SIDT1 polymorphism fails to inhibit SARS-CoV-2 replication. Cell Discovery, 2020, 6, 63.	3.1	18
33	Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro. Virologica Sinica, 2020, 35, 776-784.	1.2	24
34	Calcium channel blocker amlodipine besylate therapy is associated with reduced case fatality rate of COVID-19 patients with hypertension. Cell Discovery, 2020, 6, 96.	3.1	85
35	Gallium maltolate has <i>in vitro</i> antiviral activity against SARS-CoV-2 and is a potential treatment for COVID-19. Antiviral Chemistry and Chemotherapy, 2020, 28, 204020662098378.	0.3	14
36	Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature Structural and Molecular Biology, 2020, 27, 529-532.	3.6	339

#	Article	IF	CITATIONS
37	Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.	13.7	3,133
38	A Comparative Quantitative Proteomic Analysis of HCMV-Infected Cells Highlights pUL138 as a Multifunctional Protein. Molecules, 2020, 25, 2520.	1.7	6
39	Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 2020, 30, 269-271.	5.7	5,527
40	SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Science China Life Sciences, 2020, 63, 1413-1416.	2.3	104
41	SFTSV Infection Induces BAK/BAX-Dependent Mitochondrial DNA Release to Trigger NLRP3 Inflammasome Activation. Cell Reports, 2020, 30, 4370-4385.e7.	2.9	80
42	Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368, 1331-1335.	6.0	1,135
43	Calcium channel blockers reduce severe fever with thrombocytopenia syndrome virus (SFTSV) related fatality. Cell Research, 2019, 29, 739-753.	5.7	81
44	Comprehensive Interactome Analysis Reveals that STT3B Is Required for N-Glycosylation of Lassa Virus Glycoprotein. Journal of Virology, 2019, 93, .	1.5	14
45	Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection. Journal of Virology, 2019, 93, .	1.5	24
46	A novel RSV F-Fc fusion protein vaccine reduces lung injury induced by respiratory syncytial virus infection. Antiviral Research, 2019, 165, 11-22.	1.9	16
47	A Subcellular Quantitative Proteomic Analysis of Herpes Simplex Virus Type 1-Infected HEK 293T Cells. Molecules, 2019, 24, 4215.	1.7	13
48	Novel neutralizing monoclonal antibodies against Junin virus. Antiviral Research, 2018, 156, 21-28.	1.9	15
49	Screening and Identification of Lassa Virus Entry Inhibitors from an FDA-Approved Drug Library. Journal of Virology, 2018, 92, .	1.5	48
50	Global quantitative proteomic analysis profiles host protein expression in response to Sendai virus infection. Proteomics, 2017, 17, 1600239.	1.3	8
51	Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Research, 2017, 141, 140-149.	1.9	51
52	Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection. Journal of Virology, 2017, 91, .	1.5	47
53	Screening of FDA-Approved Drugs for Inhibitors of Japanese Encephalitis Virus Infection. Journal of Virology, 2017, 91, .	1.5	102
54	Proteomic Analysis of Mamestra Brassicae Nucleopolyhedrovirus Progeny Virions from Two Different Hosts. PLoS ONE, 2016, 11, e0153365.	1.1	12

#	Article	IF	CITATIONS
55	Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus. Journal of Virology, 2016, 90, 10259-10270.	1.5	15
56	The ubiquitin-proteasome system is essential for the productive entry of Japanese encephalitis virus. Virology, 2016, 498, 116-127.	1.1	44
57	Structure-function relationship of the mammarenavirus envelope glycoprotein. Virologica Sinica, 2016, 31, 380-394.	1.2	20
58	Analysis of EV71 infection progression using triple-SILAC-based proteomics approach. Proteomics, 2015, 15, 3629-3643.	1.3	8
59	Global quantitative proteomic analysis of human glioma cells profiled host protein expression in response to enterovirus type 71 infection. Proteomics, 2015, 15, 3784-3796.	1.3	13
60	The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Scientific Reports, 2015, 5, 8421.	1.6	109
61	Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. Biochimica Ét Biophysica Acta - Proteins and Proteomics, 2015, 1854, 967-978.	1.1	11
62	Quantitative proteomics reveals olfactory input-dependent alterations in the mouse olfactory bulb proteome. Journal of Proteomics, 2014, 109, 125-142.	1.2	10
63	Identification of Host Proteins Involved in Japanese Encephalitis Virus Infection by Quantitative Proteomics Analysis. Journal of Proteome Research, 2013, 12, 2666-2678.	1.8	80
64	Comparative Proteomics Reveal Fundamental Structural and Functional Differences between the Two Progeny Phenotypes of a Baculovirus. Journal of Virology, 2013, 87, 829-839.	1.5	87
65	Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. , 0, .		1