
Ileana Bortolomai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3636871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editing TÂcell repertoire by thymic epithelial cell-directed gene transfer abrogates risk of type 1 diabetes development. Molecular Therapy - Methods and Clinical Development, 2022, 25, 508-519.	4.1	1
2	Premature Senescence and Increased Oxidative Stress in the Thymus of Down Syndrome Patients. Frontiers in Immunology, 2021, 12, 669893.	4.8	15
3	Gene Modification and Three-Dimensional Scaffolds as Novel Tools to Allow the Use of Postnatal Thymic Epithelial Cells for Thymus Regeneration Approaches. Stem Cells Translational Medicine, 2019, 8, 1107-1122.	3.3	31
4	Thymic Epithelium Abnormalities in DiGeorge and Down Syndrome Patients Contribute to Dysregulation in T Cell Development. Frontiers in Immunology, 2019, 10, 447.	4.8	64
5	Murine <i>Ranklâʾʾ/â̂² </i> Mesenchymal Stromal Cells Display an Osteogenic Differentiation Defect Improved by a RANKL-Expressing Lentiviral Vector. Stem Cells, 2017, 35, 1365-1377.	3.2	18
6	<i>EXTL3</i> mutations cause skeletal dysplasia, immune deficiency, and developmental delay. Journal of Experimental Medicine, 2017, 214, 623-637.	8.5	76
7	Dual-Targeting Nanoparticles for <i>In Vivo</i> Delivery of Suicide Genes to Chemotherapy-Resistant Ovarian Cancer Cells. Molecular Cancer Therapeutics, 2017, 16, 323-333.	4.1	34
8	<i>Clostridium perfringens</i> enterotoxin <scp>C</scp> â€terminal domain labeled to fluorescent dyes for <i>in vivo</i> visualization of micrometastatic chemotherapyâ€resistant ovarian cancer. International Journal of Cancer, 2015, 137, 2618-2629.	5.1	27
9	Solitomab, an epithelial cell adhesion molecule/CD3 bispecific antibody (BiTE), is highly active against primary chemotherapyâ€resistant ovarian cancer cell lines in vitro and fresh tumor cells ex vivo. Cancer, 2015, 121, 403-412.	4.1	19
10	Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0136120.	2.5	20
11	Tâ€ÐM1, a novel antibody–drug conjugate, is highly effective against primary HER2 overexpressing uterine serous carcinoma in vitro and in vivo. Cancer Medicine, 2014, 3, 1256-1265.	2.8	42
12	Class III β-tubulin overexpression within the tumor microenvironment is a prognostic biomarker for poor overall survival in ovarian cancer patients treated with neoadjuvant carboplatin/paclitaxel. Clinical and Experimental Metastasis, 2014, 31, 101-110.	3.3	40
13	HER2/neu gene amplification determines the sensitivity of uterine serous carcinoma cell lines to AZD8055, a novel dual mTORC1/2 inhibitor. Gynecologic Oncology, 2013, 131, 753-758.	1.4	39
14	Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor ofÂClass I PI3 kinase and mTOR kinase (TORC1/2). American Journal of Obstetrics and Gynecology, 2013, 209, 465.e1-465.e9.	1.3	31
15	Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2916-2921.	7.1	275
16	Tubulinâ€Î²â€III overexpression by uterine serous carcinomas is a marker for poor overall survival after platinum/taxane chemotherapy and sensitivity to epothilones. Cancer, 2013, 119, 2582-2592.	4.1	43
17	Tumor initiating cells: Development and critical characterization of a model derived from the A431 carcinoma cell line forming spheres in suspension. Cell Cycle, 2010, 9, 1194-1206.	2.6	75
18	Yeast Rev1 is cell cycle regulated, phosphorylated in response to DNA damage and its binding to chromosomes is dependent upon MEC1. DNA Repair, 2007, 6, 121-127.	2.8	53