
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3636717/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A nonlocal strain gradient analysis of laminated composites and sandwich nanoplates using meshfree approach. Engineering With Computers, 2023, 39, 5-21.                                                           | 3.5 | 16        |
| 2  | A size-dependent isogeometric analysis of laminated composite plates based on the nonlocal strain gradient theory. Engineering With Computers, 2023, 39, 331-345.                                                  | 3.5 | 4         |
| 3  | Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach.<br>Engineering With Computers, 2023, 39, 857-866.                                                                   | 3.5 | 14        |
| 4  | A novel size-dependent nonlocal strain gradient isogeometric model for functionally graded carbon<br>nanotube-reinforced composite nanoplates. Engineering With Computers, 2022, 38, 2027-2040.                    | 3.5 | 33        |
| 5  | A modified strain gradient meshfree approach for functionally graded microplates. Engineering With<br>Computers, 2022, 38, 4545-4567.                                                                              | 3.5 | 10        |
| 6  | Buckling Analysis of FG GPLRC Plate Using a Naturally Stabilized Nodal Integration Meshfree Method.<br>Lecture Notes in Mechanical Engineering, 2022, , 189-202.                                                   | 0.3 | 0         |
| 7  | A refined isogeometric plate analysis of porous metal foam microplates using modified strain gradient<br>theory. Composite Structures, 2022, 289, 115467.                                                          | 3.1 | 27        |
| 8  | NURBS-based refined plate theory for metal foam plates with porosities. Thin-Walled Structures, 2022, 175, 109246.                                                                                                 | 2.7 | 12        |
| 9  | Size-dependent nonlocal strain gradient modeling of hexagonal beryllium crystal nanoplates.<br>International Journal of Mechanics and Materials in Design, 2021, 17, 931-945.                                      | 1.7 | 9         |
| 10 | A refined nonlocal isogeometric model for multilayer functionally graded graphene<br>platelet-reinforced composite nanoplates. Thin-Walled Structures, 2021, 164, 107862.                                          | 2.7 | 39        |
| 11 | Scale-dependent nonlocal strain gradient isogeometric analysis of metal foam nanoscale plates with<br>various porosity distributions. Composite Structures, 2021, 268, 113949.                                     | 3.1 | 41        |
| 12 | A nonlocal strain gradient isogeometric nonlinear analysis of nanoporous metal foam plates.<br>Engineering Analysis With Boundary Elements, 2021, 130, 58-68.                                                      | 2.0 | 33        |
| 13 | A size dependent meshfree model for functionally graded plates based on the nonlocal strain gradient theory. Composite Structures, 2021, 272, 114169.                                                              | 3.1 | 36        |
| 14 | Optimal design of FG sandwich nanoplates using size-dependent isogeometric analysis. Mechanics of<br>Materials, 2020, 142, 103277.                                                                                 | 1.7 | 46        |
| 15 | A size-dependent quasi-3D isogeometric model for functionally graded graphene platelet-reinforced<br>composite microplates based on the modified couple stress theory. Composite Structures, 2020, 234,<br>111695. | 3.1 | 87        |
| 16 | lsogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads. Thin-Walled Structures, 2020, 148, 106497.                                                              | 2.7 | 56        |
| 17 | A meshfree approach using naturally stabilized nodal integration for multilayer FG GPLRC<br>complicated plate structures. Engineering Analysis With Boundary Elements, 2020, 117, 346-358.                         | 2.0 | 76        |
| 18 | A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates. Composite Structures, 2020, 251, 112634.                                                      | 3.1 | 71        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Free vibration analysis of functionally graded anisotropic microplates using modified strain gradient theory. Engineering Analysis With Boundary Elements, 2020, 117, 284-298.                                                          | 2.0 | 52        |
| 20 | Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates. Composite Structures, 2020, 239, 112029.                                                                            | 3.1 | 53        |
| 21 | A size-dependent moving Kriging meshfree model for deformation and free vibration analysis of<br>functionally graded carbon nanotube-reinforced composite nanoplates. Engineering Analysis With<br>Boundary Elements, 2020, 115, 52-63. | 2.0 | 50        |
| 22 | An isogeometric approach of static and free vibration analyses for porous FG nanoplates. European<br>Journal of Mechanics, A/Solids, 2019, 78, 103851.                                                                                  | 2.1 | 110       |
| 23 | Static and dynamic analyses of three-dimensional hollow concrete block revetments using polyhedral finite element method. Applied Ocean Research, 2019, 88, 15-28.                                                                      | 1.8 | 6         |
| 24 | Free vibration, buckling and bending analyses of multilayer functionally graded graphene<br>nanoplatelets reinforced composite plates using the NURBS formulation. Composite Structures, 2019,<br>220, 749-759.                         | 3.1 | 158       |
| 25 | Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Composites Part B: Engineering, 2019, 169, 174-188.                                                | 5.9 | 105       |
| 26 | Size-Dependent Analysis for FG-CNTRC Nanoplates Based on Refined Plate Theory and Modified Couple<br>Stress. Lecture Notes in Civil Engineering, 2019, , 225-237.                                                                       | 0.3 | 3         |
| 27 | Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Composites Part B: Engineering, 2019, 164, 215-225.                                                                     | 5.9 | 151       |
| 28 | Fluid–Structure Interaction Analysis of Revetment Structures—An Overview. Lecture Notes in<br>Mechanical Engineering, 2018, , 723-731.                                                                                                  | 0.3 | 0         |
| 29 | Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Composite Structures, 2018, 184, 633-649.                                                             | 3.1 | 88        |
| 30 | A polytree-based adaptive polygonal finite element method for topology optimization of<br>fluid-submerged breakwater interaction. Computers and Mathematics With Applications, 2018, 76,<br>1198-1218.                                  | 1.4 | 27        |
| 31 | Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments.<br>Composite Structures, 2018, 201, 882-892.                                                                                                  | 3.1 | 70        |
| 32 | Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Composite Structures, 2017, 166, 120-135.                                                                                  | 3.1 | 132       |
| 33 | An isogeometric approach for size-dependent buckling analysis of FGM nanoplates. Journal of Physics:<br>Conference Series, 2017, 842, 012085.                                                                                           | 0.3 | 0         |
| 34 | Buckling analysis of nanoplates using IGA. Journal of Physics: Conference Series, 2017, 843, 012016.                                                                                                                                    | 0.3 | 0         |
| 35 | An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates. Composites Part B: Engineering, 2017, 118, 125-134.                                                           | 5.9 | 141       |
| 36 | Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates<br>based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear<br>Dynamics, 2017, 87, 879-894.  | 2.7 | 168       |

| #  | Article                                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Isogeometric analysis for nonlinear thermomechanical stability of functionally graded plates.<br>Composite Structures, 2016, 140, 655-667.                                                                                                                                                                                                    | 3.1 | 86        |
| 38 | A combined scheme of edge-based and node-based smoothed finite element methods for<br>Reissner–Mindlin flat shells. Engineering With Computers, 2016, 32, 267-284.                                                                                                                                                                            | 3.5 | 36        |
| 39 | An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D Fluid-Solid interaction problems. KSCE Journal of Civil Engineering, 2015, 19, 641-650.                                                                                                                                                                      | 0.9 | 18        |
| 40 | An upper-bound limit analysis of Mindlin plates using CS-DSG3 method and second-order cone programming. Journal of Computational and Applied Mathematics, 2015, 281, 32-48.                                                                                                                                                                   | 1.1 | 20        |
| 41 | An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates. International Journal of Non-Linear Mechanics, 2015, 76, 190-202.                                                                                                                                                   | 1.4 | 91        |
| 42 | Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures, 2015, 123, 137-149.                                                                                                                                                               | 3.1 | 191       |
| 43 | A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the CO-type<br>higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates.<br>Computational Materials Science, 2015, 96, 549-558.                                                                                        | 1.4 | 39        |
| 44 | Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using<br>higher-order shear deformation theory and isogeometric finite elements. Computational Materials<br>Science, 2015, 96, 495-505.                                                                                                            | 1.4 | 139       |
| 45 | A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid–solid interaction problems. Applied Mathematics and Computation, 2014, 232, 324-346.                                                                                                                                                                                           | 1.4 | 21        |
| 46 | Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed<br>discrete shear gap method (ES-DSG3) using triangular elements based on layerwise theory. Composites<br>Part B: Engineering, 2014, 60, 227-238.                                                                                               | 5.9 | 50        |
| 47 | A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the CO-HSDT for analyses of composite plates. Composite Structures, 2014, 111, 553-565.                                                                                                                                                         | 3.1 | 46        |
| 48 | A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate<br>element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic<br>foundation. Engineering Analysis With Boundary Elements, 2014, 42, 8-19.                                                                         | 2.0 | 47        |
| 49 | Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed<br>three-node plate element (CS-MIN3) based on the CO-HSDT. Computer Methods in Applied Mechanics and<br>Engineering, 2014, 270, 15-36.                                                                                                            | 3.4 | 62        |
| 50 | Free vibration analysis of cracked Mindlin plate using an extended cell-based smoothed discrete shear gap method (XCS-DSG3). Theoretical and Applied Fracture Mechanics, 2014, 72, 150-163.                                                                                                                                                   | 2.1 | 59        |
| 51 | An edge-based smoothed three-node mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE Journal of Civil Engineering, 2014, 18, 1072-1082.                                                                                                                                                                   | 0.9 | 40        |
| 52 | A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory<br>for dynamic response of composite plates resting on viscoelastic foundation. Computer Methods in<br>Applied Mechanics and Engineering, 2014, 272, 138-159.                                                                                | 3.4 | 52        |
| 53 | A cellâ€based smoothed discrete shear gap method (CSâ€FEMâ€DSG3) based on the C <sup>O</sup> â€type<br>higherâ€order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic<br>foundations subjected to a moving sprung vehicle. International Journal for Numerical Methods in<br>Engineering, 2014, 98, 988-1014. | 1.5 | 45        |
| 54 | A coupled alpha-FEM for dynamic analyses of 2D fluid–solid interaction problems. Journal of Computational and Applied Mathematics, 2014, 271, 130-149.                                                                                                                                                                                        | 1.1 | 11        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Computational Mechanics, 2013, 51, 65-81.                                                                                         | 2.2 | 56        |
| 56 | A cell-based smoothed discrete shear gap method (CS-DSG3) based on the CO-type higher-order shear<br>deformation theory for static and free vibration analyses of functionally graded plates.<br>Computational Materials Science, 2013, 79, 857-872. | 1.4 | 62        |
| 57 | FREE AND FORCED VIBRATION ANALYSIS USING THE n-SIDED POLYGONAL CELL-BASED SMOOTHED FINITE ELEMENT METHOD (nCS-FEM). International Journal of Computational Methods, 2013, 10, 1340008.                                                               | 0.8 | 53        |
| 58 | AN APPLICATION OF THE ES-FEM IN SOLID DOMAIN FOR DYNAMIC ANALYSIS OF 2D FLUID–SOLID INTERACTION PROBLEMS. International Journal of Computational Methods, 2013, 10, 1340003.                                                                         | 0.8 | 39        |
| 59 | Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers and Structures, 2013, 125, 100-113.                                                                                             | 2.4 | 76        |
| 60 | A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and<br>free vibration analyses of shell structures. International Journal of Mechanical Sciences, 2013, 74,<br>32-45.                                 | 3.6 | 87        |
| 61 | Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSC3). Smart Materials and Structures, 2013, 22, 095026. | 1.8 | 108       |
| 62 | A cellâ€based smoothed discrete shear gap method using triangular elements for static and free<br>vibration analyses of Reissner–Mindlin plates. International Journal for Numerical Methods in<br>Engineering, 2012, 91, 705-741.                   | 1.5 | 106       |