
Francois Fripiat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3636638/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring a changing Arctic: Recent advancements in the study of sea ice microbial communities. Ambio, 2022, 51, 318-332.	5.5	12
2	The biogeochemical role of a microbial biofilm in sea ice. Elementa, 2021, 9, .	3.2	13
3	The Southern Ocean during the ice ages: A review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quaternary Science Reviews, 2021, 254, 106732.	3.0	46
4	Nitrate Supply Routes and Impact of Internal Cycling in the North Atlantic Ocean Inferred From Nitrate Isotopic Composition. Global Biogeochemical Cycles, 2021, 35, e2020GB006887.	4.9	6
5	Arctic Ocean stratification set by sea level and freshwater inputs since the last ice age. Nature Geoscience, 2021, 14, 684-689.	12.9	27
6	Nitrogen isotopic constraints on nutrient transport to the upper ocean. Nature Geoscience, 2021, 14, 855-861.	12.9	17
7	Sources and sinks of methane in sea ice. Elementa, 2021, 9, .	3.2	5
8	The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nature Climate Change, 2020, 10, 983-992.	18.8	96
9	Southern Ocean upwelling, Earth's obliquity, and glacial-interglacial atmospheric CO ₂ change. Science, 2020, 370, 1348-1352.	12.6	57
10	Sea Ice CO ₂ Dynamics Across Seasons: Impact of Processes at the Interfaces. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015807.	2.6	14
11	Physical and biological properties of early winter Antarctic sea ice in the Ross Sea. Annals of Glaciology, 2020, 61, 241-259.	1.4	9
12	Physical and biogeochemical parameters of the Mediterranean Sea during a cruise with RV <i>Maria S. Merian</i> in March 2018. Earth System Science Data, 2020, 12, 2747-2763.	9.9	4
13	Saroma-ko Lagoon Observations for sea ice Physico-chemistry and Ecosystems 2019 (SLOPE2019). Bulletin of Glaciological Research, 2020, 38, 1-12.	1.0	7
14	New Insights Into Processes Controlling the Ĩ´30 Si of Sinking Diatoms: A Seasonally Resolved Box Model Approach. Global Biogeochemical Cycles, 2019, 33, 957-970.	4.9	2
15	Evidence of high N ₂ fixation rates in the temperate northeast Atlantic. Biogeosciences, 2019, 16, 999-1017.	3.3	18
16	The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications. Geochimica Et Cosmochimica Acta, 2019, 247, 261-279.	3.9	28
17	The effect of melting treatments on the assessment of biomass and nutrients in sea ice (Saroma-ko) Tj ETQq1 1	0.784314 1.2	rg&T /Overio

18 Nitrogen Isotopes in the Ocean. , 2019, , 263-278.

53

FRANCOIS FRIPIAT

#	Article	IF	CITATIONS
19	Chlorophyllâ€ <i>a</i> in Antarctic Landfast Sea Ice: A First Synthesis of Historical Ice Core Data. Journal of Geophysical Research: Oceans, 2018, 123, 8444-8459.	2.6	34
20	Variability in sulfur isotope composition suggests unique dimethylsulfoniopropionate cycling and microalgae metabolism in Antarctic sea ice. Communications Biology, 2018, 1, 212.	4.4	12
21	A Seasonal Model of Nitrogen Isotopes in the Ice Age Antarctic Zone: Support for Weakening of the Southern Ocean Upper Overturning Cell. Paleoceanography and Paleoclimatology, 2018, 33, 1453-1471.	2.9	12
22	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
23	Influence of the bordering shelves on nutrient distribution in the Arctic halocline inferred from water column nitrate isotopes. Limnology and Oceanography, 2018, 63, 2154-2170.	3.1	23
24	Nitrogen fixation in the eastern Atlantic reaches similar levels in the Southern and Northern Hemisphere. Journal of Geophysical Research: Oceans, 2017, 122, 587-601.	2.6	17
25	Inter-comparison of salt effect correction for δ18O and δ2H measurements in seawater by CRDS and IRMS using the gas-H2O equilibration method. Marine Chemistry, 2017, 194, 114-123.	2.3	17
26	Macro-nutrient concentrations in Antarctic pack ice: Overall patterns and overlooked processes. Elementa, 2017, 5, .	3.2	39
27	Sea-ice algal primary production and nitrogen uptake rates off East Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 131, 140-149.	1.4	18
28	Significant mixed layer nitrification in a natural ironâ€fertilized bloom of the Southern Ocean. Global Biogeochemical Cycles, 2015, 29, 1929-1943.	4.9	21
29	High turnover rates indicated by changes in the fixed <scp>N</scp> forms and their stable isotopes in <scp>A</scp> ntarctic landfast sea ice. Journal of Geophysical Research: Oceans, 2015, 120, 3079-3097.	2.6	28
30	Production regime and associated N cycling in the vicinity of Kerguelen Island, Southern Ocean. Biogeosciences, 2015, 12, 6515-6528.	3.3	26
31	Nitrogen cycling in the Southern Ocean Kerguelen Plateau area: evidence for significant surface nitrification from nitrate isotopic compositions. Biogeosciences, 2015, 12, 1459-1482.	3.3	11
32	Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations. Elementa, 2015, 3, .	3.2	77
33	New insights into sea ice nitrogen biogeochemical dynamics from the nitrogen isotopes. Global Biogeochemical Cycles, 2014, 28, 115-130.	4.9	53
34	Biogenic silica recycling in sea ice inferred from Si-isotopes: constraints from Arctic winter first-year sea ice. Biogeochemistry, 2014, 119, 25-33.	3.5	14
35	Physical and biological controls on DMS,P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions. Journal of Geophysical Research: Oceans, 2014, 119, 2882-2905.	2.6	22
36	lsotopic model of oceanic silicon cycling: The Kerguelen Plateau case study. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 70, 42-59.	1.4	8

FRANCOIS FRIPIAT

#	Article	IF	CITATIONS
37	Processes controlling the Si-isotopic composition in the Southern Ocean and application for paleoceanography. Biogeosciences, 2012, 9, 2443-2457.	3.3	48
38	Contrasting regimes of production and potential for carbon export in the Sub-Antarctic and Polar Frontal Zones south of Tasmania. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 2235-2247.	1.4	18
39	Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes. Ocean Science, 2011, 7, 533-547.	3.4	56
40	Silicon uptake and supply during a Southern Ocean iron fertilization experiment (EIFEX) tracked by Si isotopes. Limnology and Oceanography, 2011, 56, 147-160.	3.1	22
41	lsotopic constraints on the Si-biogeochemical cycle of the Antarctic Zone in the Kerguelen area (KEOPS). Marine Chemistry, 2011, 123, 11-22.	2.3	81
42	Efficient silicon recycling in summer in both the Polar Frontal and Subantarctic Zones of the Southern Ocean. Marine Ecology - Progress Series, 2011, 435, 47-61.	1.9	20
43	Measuring production-dissolution rates of marine biogenic silica by30Si-isotope dilution using a high-resolution sector field inductively coupled plasma mass spectrometer. Limnology and Oceanography: Methods, 2009, 7, 470-478.	2.0	10
44	δ ³⁰ Si and δ ²⁹ Si Determinations on USGS BHVOâ€1 and BHVOâ€2 Reference Materials with a New Configuration on a Nu Plasma Multiâ€Collector ICPâ€MS. Geostandards and Geoanalytical Research, 2008, 32, 193-202.	1.9	101
45	Diatom-induced silicon isotopic fractionation in Antarctic sea ice. Journal of Geophysical Research, 2007, 112, .	3.3	44
46	Silicon isotopes in spring Southern Ocean diatoms: Large zonal changes despite homogeneity among size fractions. Marine Chemistry, 2007, 106, 46-62.	2.3	77