Sarp Kaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3636618/publications.pdf

Version: 2024-02-01

147726 66879 6,261 77 31 78 citations h-index g-index papers 82 82 82 9128 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stabilization of Cu ₂ O through Site-Selective Formation of a Co ₁ Cu Hybrid Single-Atom Catalyst. Chemistry of Materials, 2022, 34, 2313-2320.	3.2	5
2	Ag/AgCl clusters derived from AgCu alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2022, 6, 2593-2601.	2.5	2
3	Mesoporous Molybdenum Sulfide-Oxide Composite Thin-Film Electrodes Prepared by a Soft Templating Method for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 7006-7015.	2.5	4
4	The significance of the local structure of cobalt-based catalysts on the photoelectrochemical water oxidation activity of BiVO4. Electrochimica Acta, 2021, 366, 137467.	2.6	8
5	Easy hydrogenation and dehydrogenation of a hybrid graphene and hexagonal boron nitride monolayer on platinum. 2D Materials, 2021, 8, 025023.	2.0	3
6	HIPPIE: a new platform for ambient-pressure X-ray photoelectron spectroscopy at the MAX IV Laboratory. Journal of Synchrotron Radiation, 2021, 28, 624-636.	1.0	60
7	Surfactant-free synthesis of CdS nanorods for efficient reduction of carcinogenic Cr(VI). Journal of Coordination Chemistry, 2021, 74, 1628-1640.	0.8	6
8	Green synthesis of mesoporous MoS ₂ nanoflowers for efficient photocatalytic degradation of Congo red dye. Journal of Coordination Chemistry, 2021, 74, 2302-2314.	0.8	4
9	Scaling-up photocatalytic activity of CdS from nanorods to nanowires for the MB degradation. Inorganic Chemistry Communication, 2021, 130, 108744.	1.8	9
10	Acetic acid conversion to ketene on $Cu2O(1\ 0\ 0)$: Reaction mechanism deduced from experimental observations and theoretical computations. Journal of Catalysis, 2021, 402, 154-165.	3.1	3
11	Modifying the Electron-Trapping Process at the BiVO ₄ Surface States via the TiO ₂ Overlayer for Enhanced Water Oxidation. ACS Applied Materials & Diterfaces, 2021, 13, 60602-60611.	4.0	18
12	Increasing Charge Separation Property and Water Oxidation Activity of BiVO ₄ Photoanodes via a Postsynthetic Treatment. Journal of Physical Chemistry C, 2020, 124, 1337-1345.	1.5	12
13	Enhanced electron transport induced by a ferroelectric field in efficient halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 206, 110318.	3.0	19
14	Charge transfer controlled hydrogenation of graphene on an electronically modified Pt(111) surface. Carbon, 2020, 170, 636-645.	5.4	4
15	Highly sensitive optical sensor for hydrogen gas based on a polymer microcylinder ring resonator. Sensors and Actuators B: Chemical, 2020, 310, 127806.	4.0	16
16	Efficient carrier utilization induced by conductive polypyrrole additives in organic-inorganic halide perovskite solar cells. Solar Energy, 2020, 207, 1300-1307.	2.9	15
17	The Fast-Track Water Oxidation Channel on BiVO ₄ Opened by Nitrogen Treatment. Journal of Physical Chemistry Letters, 2020, 11, 8758-8764.	2.1	13
18	Mesoporous Thin-Film NiS ₂ as an Idealized Pre-Electrocatalyst for a Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 15114-15122.	5.5	58

#	Article	IF	CITATIONS
19	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO 4 for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2483-2483.	3.6	4
20	Strong Light–Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO ₄ for Photoelectrochemical Water Splitting. ChemSusChem, 2020, 13, 2577-2588.	3.6	34
21	One-pot synthesis of monodisperse copper–silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 831, 154787.	2.8	23
22	Modifying hydrogen binding strength of graphene. Surface Science, 2019, 679, 24-30.	0.8	12
23	A comprehensive study on the characteristic spectroscopic features of nitrogen doped graphene. Applied Surface Science, 2019, 495, 143518.	3.1	11
24	Roles of Charge Carriers in the Excited State Dynamics of BiVO ₄ Photoanodes. Journal of Physical Chemistry C, 2019, 123, 28576-28583.	1.5	8
25	High-Density Isolated Fe ₁ O ₃ Sites on a Single-Crystal Cu ₂ O(100) Surface. Journal of Physical Chemistry Letters, 2019, 10, 7318-7323.	2.1	8
26	Interaction of Atomic Hydrogen with the Cu ₂ O(100) and (111) Surfaces. Journal of Physical Chemistry C, 2019, 123, 22172-22180.	1.5	13
27	Weakening the strength of CO binding on subsurface alloyed Pt(111). Surface Science, 2019, 682, 1-7.	0.8	4
28	Electrocatalytic reduction of CO ₂ to produce higher alcohols. Sustainable Energy and Fuels, 2018, 2, 2532-2541.	2.5	41
29	Operando X-Ray Photoelectron Spectroscopy Studies of Aqueous Electrocatalytic Systems. Topics in Catalysis, 2016, 59, 439-447.	1.3	23
30	Chemical Bond Activation Observed with an X-ray Laser. Journal of Physical Chemistry Letters, 2016, 7, 3647-3651.	2.1	21
31	Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer. Structural Dynamics, 2015, 2, 025101.	0.9	27
32	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	0.8	13
33	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	6.0	193
34	Low Barrier Carbon Induced CO Dissociation on Stepped Cu. Physical Review Letters, 2015, 114, 246101.	2.9	8
35	Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy andAbÂlnitioSimulations. Physical Review Letters, 2015, 114, 156101.	2.9	25
36	Direct observation of the dealloying process of a platinumâ€"yttrium nanoparticle fuel cell cathode and its oxygenated species during the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28121-28128.	1.3	54

#	Article	IF	CITATIONS
37	Determination of the surface electronic structure of Fe3O4(1 1 1) by soft X-ray spectroscopy. Catalysis Today, 2015, 240, 184-189.	2.2	20
38	Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section. Journal of Chemical Physics, 2014, 141, 034507.	1.2	60
39	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	1.5	87
40	Inâ€Situ Observation of Surface Species on Iridium Oxide Nanoparticles during the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2014, 53, 7169-7172.	7.2	386
41	Different Reactivity of the Various Platinum Oxides and Chemisorbed Oxygen in CO Oxidation on Pt(111). Journal of the American Chemical Society, 2014, 136, 6340-6347.	6.6	71
42	Highly Compressed Two-Dimensional Form of Water at Ambient Conditions. Scientific Reports, 2013, 3, 1074.	1.6	31
43	X-ray Photoemission and Density Functional Theory Study of the Interaction of Water Vapor with the Fe ₃ O ₄ (001) Surface at Near-Ambient Conditions. Journal of Physical Chemistry C, 2013, 117, 2719-2733.	1.5	92
44	Interlayer Carbon Bond Formation Induced by Hydrogen Adsorption in Few-Layer Supported Graphene. Physical Review Letters, 2013, 111, 085503.	2.9	110
45	Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	1.5	5
46	Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Communications, 2013, 4, .	5.8	325
47	Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catalysis Today, 2013, 205, 101-105.	2.2	103
48	Ultrafast soft X-ray emission spectroscopy of surface adsorbates using an X-ray free electron laser. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187, 9-14.	0.8	27
49	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	6.0	179
50	Electronic structure effects in catalysis probed by X-ray and electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 113-124.	0.8	13
51	Identification of the electronic structure differences between polar isostructural FeO and CoO films by core-level soft x-ray spectroscopy. Physical Review B, 2013, 87, .	1.1	2
52	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	2.9	51
53	Probing substrate effects in the carbon-projected band structure of graphene on $Pt(111)$ through resonant inelastic x-ray scattering. Physical Review B, 2012, 85, .	1.1	27
54	Reversible graphene-metal contact through hydrogenation. Physical Review B, 2012, 86, .	1.1	28

#	Article	IF	CITATIONS
55	Tuning the Metal–Adsorbate Chemical Bond through the Ligand Effect on Platinum Subsurface Alloys. Angewandte Chemie - International Edition, 2012, 51, 7724-7728.	7.2	15
56	Autocatalytic Surface Hydroxylation of MgO(100) Terrace Sites Observed under Ambient Conditions. Journal of Physical Chemistry C, 2011, 115, 12864-12872.	1.5	71
57	Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS. Surface Science, 2011, 605, 89-94.	0.8	130
58	Oxidation of Pt(111) under Near-Ambient Conditions. Physical Review Letters, 2011, 107, 195502.	2.9	151
59	X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 99-129.	0.8	158
60	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	6.6	2,489
61	When an Encapsulating Oxide Layer Promotes Reaction on Noble Metals: Dewetting and InÂsitu Formation of an "Inverted―FeO x /Pt Catalyst. Catalysis Letters, 2008, 126, 31-35.	1.4	46
62	Selectivity in Methanol Oxidation as Studied on Model Systems Involving Vanadium Oxides. Topics in Catalysis, 2008, 50, 106-115.	1.3	53
63	Formation of one-dimensional molybdenum oxide on Mo(112). Surface Science, 2008, 602, 3338-3342.	0.8	23
64	Growth of stoichiometric subnanometer silica films. Applied Physics Letters, 2008, 92, .	1.5	23
65	STRUCTURE, THERMAL STABILITY, AND CO ADSORPTION PROPERTIES OF PD NANOPARTICLES SUPPORTED ON AN ULTRA-THIN SiO ₂ FILM. Surface Review and Letters, 2007, 14, 927-934.	0.5	7
66	Oxygen adsorption on Mo(112) surface studied by ab initio genetic algorithm and experiment. Journal of Chemical Physics, 2007, 126, 234710.	1.2	37
67	Ice-Assisted Preparation of Silica-Supported Vanadium Oxide Particles. Journal of Physical Chemistry C, 2007, 111, 5337-5344.	1.5	25
68	Formation of an Ordered Ice Layer on a Thin Silica Film. Journal of Physical Chemistry C, 2007, 111, 759-764.	1.5	41
69	On the geometrical and electronic structure of an ultra-thin crystalline silica film grown on Mo(112). Surface Science, 2007, 601, 4849-4861.	0.8	48
70	Interplay between theory and experiment in the quest for silica with reduced dimensionality grown on a Mo(112) surface. Chemical Physics Letters, 2006, 424, 115-119.	1.2	27
71	Low temperature CO induced growth of Pd supported on a monolayer silica film. Surface Science, 2006, 600, L153-L157.	0.8	18
72	Formation of one-dimensional crystalline silica on a metal substrate. Surface Science, 2006, 600, L164-L168.	0.8	19

SARP KAYA

#	Article	IF	CITATIONS
73	Vanadium oxide surfaces and supported vanadium oxide nanoparticles. Topics in Catalysis, 2006, 38, 117-125.	1.3	80
74	Synthesis and Structure of Ultrathin Aluminosilicate Films. Angewandte Chemie - International Edition, 2006, 45, 7636-7639.	7.2	45
75	Atomic structure of a thin silica film on aMo(112)substrate: A combined experimental and theoretical study. Physical Review B, 2006, 73, .	1.1	61
76	Atomic Structure of a Thin Silica Film on a Mo(112) Substrate: A Two-Dimensional Network of SiO4Tetrahedra. Physical Review Letters, 2005, 95, 076103.	2.9	201
77	CO Adsorption study of V/SiO2: the low vanadium coverage regime. Chemical Physics Letters, 2004, 392, 127-131.	1.2	5