Donald R Cahoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3636611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	1,168
2	The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature, 2015, 526, 559-563.	27.8	606
3	Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 2007, 16, 545-556.	5.8	561
4	How mangrove forests adjust to rising sea level. New Phytologist, 2014, 202, 19-34.	7.3	489
5	Pattern and Process of Land Loss in the Mississippi Delta: A Spatial and Temporal Analysis of Wetland Habitat Change. Estuaries and Coasts, 2000, 23, 425.	1.7	409
6	Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology, 2003, 91, 1093-1105.	4.0	380
7	Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology, 1995, 128, 1-9.	2.1	353
8	Elevated CO ₂ stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6182-6186.	7.1	251
9	A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 2006, 29, 889-898.	2.2	243
10	A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Climate Change, 2013, 3, 458-465.	18.8	217
11	Accretion and Canal Impacts in a Rapidly Subsiding Wetland II. Feldspar Marker Horizon Technique. Estuaries and Coasts, 1989, 12, 260.	1.7	201
12	Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise. Ecological Engineering, 2011, 37, 229-240.	3.6	200
13	Coastal Wetland Vulnerability to Relative Sea-Level Rise: Wetland Elevation Trends and Process Controls. , 2006, , 271-292.		168
14	Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A Mangroves and Salt Marshes, 1997, 1, 173-186.	0.6	157
15	Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecological Engineering, 1999, 12, 189-205.	3.6	125
16	Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 2011, 131, 57-68.	2.6	108
17	Marsh Vertical Accretion in a Southern California Estuary, U.S.A Estuarine, Coastal and Shelf Science, 1996, 43, 19-32.	2.1	107
18	Evaluating the Relationship Among Wetland Vertical Development, Elevation Capital, Sea-Level Rise, and Tidal Marsh Sustainability. Estuaries and Coasts, 2019, 42, 1-15.	2.2	105

DONALD R CAHOON

#	Article	IF	CITATIONS
19	Groundwater control of mangrove surface elevation: Shrink and swell varies with soil depth. Estuaries and Coasts, 2005, 28, 833-843.	1.7	103
20	Estimating Relative Sea-Level Rise and Submergence Potential at a Coastal Wetland. Estuaries and Coasts, 2015, 38, 1077-1084.	2.2	88
21	The Role of Surface and Subsurface Processes in Keeping Pace with Sea Level Rise in Intertidal Wetlands of Moreton Bay, Queensland, Australia. Ecosystems, 2011, 14, 745-757.	3.4	84
22	How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise. Estuaries and Coasts, 2021, 44, 883-898.	2.2	83
23	Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure. Ecological Applications, 2014, 24, 633-649.	3.8	82
24	Recent Accretion in Two Managed Marsh Impoundments in Coastal Louisiana. , 1994, 4, 166-176.		81
25	Sediment transportâ€based metrics of wetland stability. Geophysical Research Letters, 2015, 42, 7992-8000.	4.0	80
26	Elevation trends and shrink–swell response of wetland soils to flooding andÂdrying. Estuarine, Coastal and Shelf Science, 2011, 91, 463-474.	2.1	60
27	Coastal Wetland Resilience, Accelerated Sea‣evel Rise, and the Importance of Timescale. AGU Advances, 2021, 2, e2020AV000334.	5.4	46
28	Processes Contributing to Resilience of Coastal Wetlands to Sea-Level Rise. Ecosystems, 2016, 19, 1445-1459.	3.4	44
29	Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network. PLoS ONE, 2017, 12, e0183431.	2.5	33
30	A Tropical Cyclone-Induced Ecological Regime Shift: Mangrove Forest Conversion to Mudflat in Everglades National Park (Florida, USA). Wetlands, 2020, 40, 1445-1458.	1.5	32
31	Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005349.	3.0	32
32	The Long-Term Effects of Hurricanes Wilma and Irma on Soil Elevation Change in Everglades Mangrove Forests. Ecosystems, 2020, 23, 917-931.	3.4	26
33	Canals, backfilling and wetland loss in the Mississippi Delta. Estuarine, Coastal and Shelf Science, 2019, 227, 106325.	2.1	19
34	Processes Influencing Marsh Elevation Change in Low- and High-Elevation Zones of a Temperate Salt Marsh. Estuaries and Coasts, 2021, 44, 818-833.	2.2	19
35	Coastal Wetlands. , 2019, , 1-75.		17
36	The Surface Elevation Table-Marker Horizon Method for Measuring Wetland Accretion and Elevation Dynamics. Soil Science Society of America Book Series, 0, , 901-917.	0.3	15

DONALD R CAHOON

#	Article	IF	CITATIONS
37	Applications and utility of the surface elevation table–marker horizon method for measuring wetland elevation and shallow soil subsidence-expansion. Geo-Marine Letters, 2020, 40, 809-815.	1.1	13
38	Accelerated sea-level rise is suppressing CO ₂ stimulation of tidal marsh productivity: A 33-year study. Science Advances, 2022, 8, eabn0054.	10.3	13
39	Hurricane Sandy Effects on Coastal Marsh Elevation Change. Estuaries and Coasts, 2020, 43, 1640-1657.	2.2	12
40	Ecogeomorphology of <i>Spartina Patens</i> -dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance. Coastal and Estuarine Studies, 0, , 247-266.	0.4	11
41	Does geomorphology determine vulnerability of mangrove coasts to sea-level rise?. , 2021, , 255-272.		9
42	Reply to Comment by R. Parkinson on "Increasing Rates of Carbon Burial in Southwest Florida Coastal Wetlands―by J. Breithaupt etÂal Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006245.	3.0	0