Junpeng Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635882/publications.pdf

Version: 2024-02-01

136950 223800 2,314 66 32 46 h-index citations g-index papers 66 66 66 1513 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Macromolecular architectures through organocatalysis. Progress in Polymer Science, 2017, 74, 34-77.	24.7	124
2	High Efficiency Organic Lewis Pair Catalyst for Ring-Opening Polymerization of Epoxides with Chemoselectivity. Macromolecules, 2018, 51, 8286-8297.	4.8	105
3	Self-Buffering Organocatalysis Tailoring Alternating Polyester. ACS Macro Letters, 2017, 6, 1094-1098.	4.8	94
4	Biased Lewis Pairs: A General Catalytic Approach to Etherâ€Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie - International Edition, 2019, 58, 15478-15487.	13.8	90
5	A "Catalyst Switch―Strategy for the Sequential Metal-Free Polymerization of Epoxides and Cyclic Esters/Carbonate. Macromolecules, 2014, 47, 3814-3822.	4.8	81
6	Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis. Macromolecules, 2018, 51, 2247-2257.	4.8	76
7	Sequential polymerization of ethylene oxide, $\hat{l}\mu$ -caprolactone and $<$ scp> $ < $ scp>-lactide: a one-pot metal-free route to tri- and pentablock terpolymers. Polymer Chemistry, 2014, 5, 3750-3753.	3.9	72
8	Phosphazene-Promoted Metal-Free Ring-Opening Polymerization of Ethylene Oxide Initiated by Carboxylic Acid. Macromolecules, 2014, 47, 1693-1698.	4.8	71
9	Sequence-Selective Terpolymerization from Monomer Mixtures Using a Simple Organocatalyst. ACS Macro Letters, 2018, 7, 1420-1425.	4.8	66
10	One-Step Approach to Polyester–Polyether Block Copolymers Using Highly Tunable Bicomponent Catalyst. ACS Macro Letters, 2019, 8, 973-978.	4.8	66
11	Phosphazene-catalyzed ring-opening polymerization of $\hat{l}\mu$ -caprolactone: influence of solvents and initiators. Polymer Chemistry, 2014, 5, 5471-5478.	3.9	65
12	Morphological transitions in aggregates of thermosensitive poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 3 Journal of Polymer Science Part A, 2009, 47, 4099-4110.	07 Td (oxid 2.3	de)â€ < i>b </td
13	Ring-Opening Alternating Copolymerization of Epoxides and Dihydrocoumarin Catalyzed by a Phosphazene Superbase. Macromolecules, 2016, 49, 4462-4472.	4.8	54
14	Thermoresponsive Coreâ^'Shell Brush Copolymers with Poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 2010, 43, 1771-1777.	Td (oxide) 4.8	- <i>block</i>
15	Amphiphilic Polystyrene-b-poly(p-hydroxystyrene-g-ethylene oxide) Blockâ 'Graft Copolymers via a Combination of Conventional and Metal-Free Anionic Polymerization. Macromolecules, 2009, 42, 8661-8668.	4.8	48
16	Macromolecular architectures based on organocatalytic ring-opening (co)polymerization of epoxides. Polymer, 2018, 143, 343-361.	3.8	46
17	Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides. Polymer Chemistry, 2015, 6, 2659-2668.	3.9	45
18	Ring-opening polymerization of \hat{I}^3 -lactones and copolymerization with other cyclic monomers. Progress in Polymer Science, 2020, 110, 101309.	24.7	45

#	Article	IF	CITATIONS
19	Revealing the Cytotoxicity of Residues of Phosphazene Catalysts Used for the Synthesis of Poly(ethylene oxide). Biomacromolecules, 2017, 18, 3233-3237.	5.4	44
20	Thermoresponsive aggregation of PS–PNIPAM–PS triblock copolymer: A combined study of light scattering and small angle neutron scattering. European Polymer Journal, 2014, 56, 59-68.	5.4	43
21	Phosphazene-promoted anionic polymerization. Polimery, 2014, 59, 49-59.	0.7	43
22	Controlled Anionic Graft Polymerization of Ethylene Oxide Directly from Poly(<i>N</i> -isopropylacrylamide). Macromolecules, 2011, 44, 5861-5864.	4.8	42
23	Synthesis of terpene–poly(ethylene oxide)s by t-BuP ₄ -promoted anionic ring-opening polymerization. Polymer Chemistry, 2012, 3, 1763-1768.	3.9	41
24	Ring-opening (co)polymerization of \hat{I}^3 -butyrolactone: a review. Polymer Journal, 2020, 52, 3-11.	2.7	40
25	Base-to-Base Organocatalytic Approach for One-Pot Construction of Poly(ethylene oxide)-Based Macromolecular Structures. Macromolecules, 2016, 49, 6817-6825.	4.8	39
26	Phosphazene-Catalyzed Alternating Copolymerization of Dihydrocoumarin and Ethylene Oxide: Weaker Is Better. Macromolecules, 2017, 50, 4198-4205.	4.8	39
27	Nylon 3 synthesized by ring opening polymerization with a metal-free catalyst. Polymer Chemistry, 2011, 2, 2888.	3.9	38
28	Block Copolymer Sequence Inversion through Photoiniferter Polymerization. ACS Macro Letters, 2019, 8, 1461-1466.	4.8	38
29	Thermoresponsive brush copolymers with poly(propylene oxideâ€ <i>ran</i> à€ethylene oxide) side chains via metalâ€free anionic polymerization "grafting from―technique. Journal of Polymer Science Part A, 2010, 48, 2320-2328.	2.3	35
30	How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers. Macromolecules, 2017, 50, 9683-9695.	4.8	35
31	Ionic Organocatalyst with a Urea Anion and Tetra-n-butyl Ammonium Cation for Rapid, Selective, and Versatile Ring-Opening Polymerization of Lactide. ACS Macro Letters, 2019, 8, 759-765.	4.8	34
32	A facile metal-free "grafting-from―route from acrylamide-based substrate toward complex macromolecular combs. Chemical Communications, 2013, 49, 7079.	4.1	32
33	Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules, 2017, 50, 7268-7281.	4.8	32
34	Oneâ€pot synthesis of linear―and threeâ€arm starâ€ŧetrablock quarterpolymers via sequential metalâ€free ringâ€opening polymerization using a "catalyst switch―strategy. Journal of Polymer Science Part A, 2015, 53, 304-312.	2.3	31
35	High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA–PEG copolymer for lithium ion batteries. RSC Advances, 2018, 8, 6373-6380.	3.6	30
36	Three-Dimensional Bacterial Behavior near Dynamic Surfaces Formed by Degradable Polymers. Langmuir, 2017, 33, 13098-13104.	3.5	27

#	Article	IF	Citations
37	Thermo-Induced Aggregation Behavior of Poly(ethylene oxide)-b-poly(N-isopropylacrylamide) Block Copolymers in the Presence of Cationic Surfactants. Journal of Physical Chemistry B, 2009, 113, 10600-10606.	2.6	26
38	Tuning the crystallinity and degradability of PCL by organocatalytic copolymerization with \hat{l} -hexalactone. Polymer, 2016, 102, 248-255.	3.8	26
39	Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ringâ€Opening Polymerizations. Angewandte Chemie - International Edition, 2021, 60, 18537-18541.	13.8	26
40	Sequence-controlled copolymers of 2,3,4,5-pentafluorostyrene: mechanistic insight and application to organocatalysis. Polymer Chemistry, 2014, 5, 698-701.	3.9	25
41	Noncopolymerization Approach to Copolymers via Concurrent Transesterification and Ring-Opening Reactions. ACS Macro Letters, 2016, 5, 40-44.	4.8	25
42	Betulin-Constituted Multiblock Amphiphiles for Broad-Spectrum Protein Resistance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6593-6600.	8.0	25
43	Chemoselective Polymerization of Epoxides from Carboxylic Acids: Direct Access to Esterified Polyethers and Biodegradable Polyurethanes. ACS Macro Letters, 2019, 8, 1582-1587.	4.8	22
44	Biased Lewis Pairs: A General Catalytic Approach to Etherâ€Ester Block Copolymers with Unlimited Ordering of Sequences. Angewandte Chemie, 2019, 131, 15624-15633.	2.0	20
45	Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers. RSC Advances, 2016, 6, 4739-4750.	3.6	19
46	Expanding the scope of organocatalysis for alternating copolymerization of dihydrocoumarin and styrene oxide. European Polymer Journal, 2017, 95, 693-701.	5 . 4	17
47	Amphoteric polymeric photonic crystal with U-shaped pH response developed by intercalation polymerization. Soft Matter, 2011, 7, 4156.	2.7	16
48	Simple and Precision Approach to Polythioimidocarbonates and Hybrid Block Copolymer Derivatives. Macromolecules, 2021, 54, 11113-11125.	4.8	16
49	Effect of Sonication on Polymeric Aggregates Formed by Poly(ethylene oxide)â€Based Amphiphilic Block Copolymers. Macromolecular Chemistry and Physics, 2009, 210, 1026-1032.	2.2	15
50	Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single- and two-component metal-free catalysts. European Polymer Journal, 2020, 134, 109820.	5.4	14
51	Thermoresponsive Aggregation Behavior of Triterpene–Poly(ethylene oxide) Conjugates in Water. Macromolecular Bioscience, 2012, 12, 1272-1278.	4.1	12
52	Thermoresponsive Molecular Brushes with Propylene Oxide/Ethylene Oxide Copolymer Side Chains in Aqueous Solution. Macromolecules, 2020, 53, 4068-4081.	4.8	10
53	A mobile precursor determines protein resistance on nanostructured surfaces. Physical Chemistry Chemical Physics, 2018, 20, 12527-12534.	2.8	8
54	Mediating covalent crosslinking of single-chain nanoparticles through solvophobicity in organic solvents. Polymer Chemistry, 2021, 12, 4462-4466.	3.9	8

#	Article	IF	CITATIONS
55	Noncovalent Protection for Direct Synthesis of α-Amino-ω-hydroxyl Poly(ethylene oxide). ACS Macro Letters, 2021, 10, 737-743.	4.8	8
56	Polymerization Using Phosphazene Bases. , 2015, , 429-449.		7
57	Selective polymerization of epoxides from hydroxycarboxylic esters: expediting controlled synthesis of α-carboxyl-ï‰-hydroxyl polyethers. Chemical Communications, 2020, 56, 12186-12189.	4.1	7
58	N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 2: Toward dihydroxytelechelic polyethers using triethylborane. European Polymer Journal, 2020, 134, 109839.	5.4	7
59	N-Heterocyclic carbene/Lewis acid-mediated ring-opening polymerization of propylene oxide. Part 1: Triisobutylaluminum as an efficient controlling agent. European Polymer Journal, 2020, 134, 109819.	5.4	7
60	Selective ring-opening polymerization of glycidyl esters: a versatile synthetic platform for glycerol-based (co)polyethers. Polymer Chemistry, 2022, 13, 3650-3659.	3.9	6
61	3d Most-Probable All-Atom Structure of Atactic Polystyrene During Glass Formation: A Neutron Total Scattering Study. Macromolecules, 2020, 53, 5140-5146.	4.8	5
62	Influence of Microstructure on the Elution Behavior of Gradient Copolymers in Different Modes of Liquid Interaction Chromatography. Analytical Chemistry, 2022, 94, 7844-7852.	6.5	5
63	Viscosity Transitions Driven by Thermoresponsive Self-Assembly in PHOS- <i>g</i> -P(PO- <i>r</i> -EO) Brush Copolymer. Macromolecules, 2018, 51, 1644-1653.	4.8	4
64	Ethoxylation of Phenols Catalyzed by <scp>Metalâ€Free</scp> Lewis Pairs: Living/Controlled Polymerization in a <scp>Slowâ€Initiation</scp> Mode ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2579-2587.	4.9	4
65	Oneâ€Step Sequenceâ€Selective Synthesis of Block Copolyester from Mixed Phthalic Anhydride, Cyclohexene Oxide, and δâ€Valerolactone. Macromolecular Chemistry and Physics, 0, , 2100321.	2.2	3
66	Hybrid Block Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ringâ€Opening Polymerizations. Angewandte Chemie, 2021, 133, 18685-18689.	2.0	2