Fanli Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635674/publications.pdf

Version: 2024-02-01

		279798	345221
58	1,423 citations	23	36
papers	citations	h-index	g-index
58	58	58	850
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Soft Magnetic Materials., 2022, , 10-23.		25
2	Novel heating- and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (MÂ=ÂFe,Co,Ni,Cu) amorphous alloys. Journal of Materials Science and Technology, 2022, 104, 109-118.	10.7	5
3	Iron-Based Magnetocaloric Materials., 2022,, 433-439.		0
4	Plastic Zr-Al-Ni-Cu-Ag bulk glassy alloys containing quasicrystalline or β-Zr plus ï‰-Zr phases. Acta Materialia, 2022, 229, 117812.	7.9	6
5	Multifunctional self-driven origami paper-based integrated microfluidic chip to detect CRP and PAB in whole blood. Biosensors and Bioelectronics, 2022, 208, 114225.	10.1	18
6	Zr-rich Zr-Al-Ni-Ag metallic glass composites with high strength and plastic strain. Journal of Alloys and Compounds, 2022, 918, 165683.	5. 5	3
7	Fe-B-Si-C-Cu amorphous and nanocrystalline alloys with ultrahigh hardness and enhanced soft magnetic properties. Journal of Non-Crystalline Solids, 2021, 554, 120606.	3.1	25
8	Compositional influence on heating-induced clustered glass formation for multicomponent Zr55-60Al10(Co,Ni,Cu,Ag)30-35 alloys. Intermetallics, 2021, 135, 107233.	3.9	2
9	Formation, structure and properties of pseudo-high entropy clustered bulk metallic glasses. Journal of Alloys and Compounds, 2020, 820, 153164.	5.5	7
10	Icosahedral and dodecagonal quasicrystal plus glass alloys with plastic deformability. Acta Materialia, 2020, 199, 1-8.	7.9	7
11	Novel phase decomposition, good soft-magnetic and mechanical properties for high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100–B (xÂ= 9–13) amorphous alloys. Journal of Alloys and Compounds, 2020, 843, 155917.	5.5	21
12	Phase decomposition and mechanical properties of pseudo-high entropy Zr65(Al,Fe,Co,Ni,M)35 (M=Cu,) Tj ETQq0	QQ rgBT	/gverlock 10
13	Formation, thermal stability and mechanical properties of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.0625Nb0.0625)100â€'Bx (xÂ= 7â€"14) amorphous alloys. Journal of Alloys and Compounds, 2020, 825, 153858.	d5.5	15
14	Ultrahigh thermal stability and hardness of nano-mixed fcc-Al and amorphous phases for multicomponent Al-based alloys. Journal of Alloys and Compounds, 2020, 832, 154997.	5.5	1
15	Multicomponent bulk metallic glasses with elevated-temperature resistance. MRS Bulletin, 2019, 44, 867-872.	3.5	9
16	High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys. Journal of Non-Crystalline Solids, 2019, 526, 119702.	3.1	27
17	Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86â€'89B11â€'14 amorphous phase. Acta Materialia, 201 170, 50-61.	97.9	42
18	Influence of Ag replacement on the formation and heating-induced phase decomposition of Zr65Al7.5Co27.5-xAgx (x=5 to 20â€at%) glassy alloys. Journal of Alloys and Compounds, 2019, 783, 545-554.	5.5	8

#	Article	IF	CITATIONS
19	Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82-85B13-16Si1Cu1 amorphous alloys. Journal of Alloys and Compounds, 2019, 785, 25-37.	5.5	56
20	Novel deformation-induced polymorphic crystallization and softening of Al-based amorphous alloys. Acta Materialia, 2018, 147, 90-99.	7.9	35
21	Liquid ejection temperature dependence of structure and glass transition behavior for rapidly solidified Zr-Al-M (M=Ni, Cu or Co) ternary glassy alloys. Journal of Alloys and Compounds, 2018, 739, 1104-1114.	5.5	9
22	Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys. Journal of Alloys and Compounds, 2018, 732, 637-645.	5.5	46
23	Development and application of Fe-based soft magnetic bulk metallic glassy inductors. Journal of Alloys and Compounds, 2018, 731, 1303-1309.	5.5	49
24	Influence of Ag replacement on supercooled liquid region and icosahedral phase precipitation of Zr65Al7.5Ni10Cu17.5-xAgx (xÂ=Â0–17.5Âat%) glassy alloys. Journal of Alloys and Compounds, 2018, 735, 1712-1721.	5.5	17
25	Features and Prospects of Multicomponent Metallic Glasses. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 37-44.	0.2	O
26	Soft magnetic properties of Fe82-83B14-15Si2C0.5-1 amorphous alloys with high saturation magnetization above 1.7 T. Journal of Non-Crystalline Solids, 2018, 500, 173-180.	3.1	30
27	Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys. Scientific Reports, 2017, 7, 46113.	3.3	9
28	High formability of glass plus fcc-Al phases in rapidly solidified Al-based multicomponent alloy. Journal of Materials Science, 2017, 52, 1246-1254.	3.7	6
29	Peculiarities and usefulness of multicomponent bulk metallic alloys. Journal of Alloys and Compounds, 2017, 707, 12-19.	5.5	25
30	High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys. Journal of Alloys and Compounds, 2017, 696, 345-352.	5.5	58
31	Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85ÂT and low coercivity below 3ÂA/m. Journal of Alloys and Compounds, 2017, 711, 132-142.	5. 5	70
32	Soft magnetic Fe-Co-based amorphous alloys with extremely high saturation magnetization exceeding 1.9ÂT and low coercivity of 2ÂA/m. Journal of Alloys and Compounds, 2017, 723, 376-384.	5.5	71
33	SENNTIX-type amorphous alloys with high B s and improved corrosion resistance. Journal of Alloys and Compounds, 2017, 707, 195-198.	5. 5	9
34	FeCo-based soft magnetic alloys with high Bs approaching 1.75ÂTÂandÂgood bending ductility. Journal of Alloys and Compounds, 2017, 691, 364-368.	5.5	48
35	Syntheses and Fundamental Properties of Cr/Mo-Adoped Fe-Rich Alloys With Metastable Phase and Saturation Magnetization Near 1.9 T. Materials Research, 2016, 19, 1299-1303.	1.3	0
36	Bulk Metallic Glasses: Formation and Applications. , 2016, , .		3

#	Article	IF	CITATIONS
37	Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys. Acta Materialia, 2016, 116, 370-381.	7.9	28
38	Annealing-induced enthalpy relaxation behavior of Ni-Pd-P-B bulk glassy type alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 250-255.	5 . 6	2
39	New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics, 2016, 76, 18-25.	3.9	41
40	Softening and good ductility for nanocrystal-dispersed amorphous Fe–Co–B alloys with high saturation magnetization above 1.7ÂT. Journal of Alloys and Compounds, 2016, 657, 237-245.	5.5	44
41	Development and Applications of Highly Functional Al-based Materials by Use of Metastable Phases. Materials Research, 2015, 18, 1414-1425.	1.3	37
42	Syntheses and Fundamental Properties of Fe-rich Metastable Phase Alloys with Saturation Magnetization Exceeding 1.9 T. Materials Research, 2015, 18, 127-135.	1.3	1
43	Syntheses and corrosion behaviors of Fe-based amorphous soft magnetic alloys with high-saturation magnetization near 1.7 T. Journal of Materials Research, 2015, 30, 547-555.	2.6	46
44	Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability. Intermetallics, 2015, 59, 18-22.	3.9	21
45	Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. Journal of Alloys and Compounds, 2015, 638, 197-203.	5.5	26
46	Solidification Atmosphere and Glass-Forming Ability of Engineering Important Fe- and Zr-Based Bulk Glassy Alloys. Transactions of the Indian Institute of Metals, 2015, 68, 1131-1136.	1.5	0
47	Sub-Tg relaxation and multi-stage glass transition behavior for bulk glassy alloys. Journal of Alloys and Compounds, 2015, 643, S11-S16.	5.5	9
48	Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015, 58, 20-30.	3.9	49
49	Fe-based amorphous soft magnetic alloys with high saturation magnetization and good bending ductility. Journal of Alloys and Compounds, 2014, 615, 163-166.	5.5	124
50	Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. Journal of Alloys and Compounds, 2014, 615, S2-S8.	5.5	82
51	Soft magnetic properties of bulk FeCoMoPCBSi glassy core prepared by copper mold casting. Journal of Applied Physics, 2012, 111, 07A312.	2.5	13
52	Effect of P to B concentration ratio on soft magnetic properties in FeSiBPCu nanocrystalline alloys. Journal of Applied Physics, 2012, 111 , .	2.5	35
53	Effect of Cu additions on the magnetic properties and microstructure of FeCoNbB nanocrystalline alloy. Applied Physics A: Materials Science and Processing, 2012, 108, 211-215.	2.3	8

 $[\]label{eq:high-cish} \begin{array}{ll} \text{High $<$i$>B</$i$>$<$/$i>$$ Fe84\^{a}^*<i>x</$i>$$ Si4B8P4Cu<$i>x</$i>$$ (<i>x</$i>$$ (<i>x</$i>$$ (<i)$x</$i>$$ (<i)$ $a \in \infty$$ 0\^{a} \in \infty$$ 1.5) nanocrystalline alloys with excellent magnetic softness. Journal of Applied Physics, 2011, 109, . \\ \end{array}$

Fanli Kong

#	Article	IF	CITATION
55	Enhancement of soft magnetic properties of FeCoNbB nanocrystalline alloys with Cu and Ni additions. Thin Solid Films, 2011, 519, 8280-8282.	1.8	10
56	Effects of Cu and P on Crystallization and Magnetic Properties of FeSiB Alloy. IEEE Transactions on Magnetics, 2011, 47, 3180-3183.	2.1	7
57	Magnetic properties and crystallization behavior of nanocrystalline FeSiBPCuAl alloys. Science China Technological Sciences, 2010, 53, 1590-1593.	4.0	11
58	Effect of yttrium on thermal stability and crystallization behavior of Nd60Fe20Al10Ni10 amorphous alloys. Journal of Rare Earths, 2008, 26, 735-740.	4.8	5