
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635674/publications.pdf Version: 2024-02-01

EANLI KONC

#	Article	IF	CITATIONS
1	Fe-based amorphous soft magnetic alloys with high saturation magnetization and good bending ductility. Journal of Alloys and Compounds, 2014, 615, 163-166.	5.5	124
2	Development and applications of Fe- and Co-based bulk glassy alloys and their prospects. Journal of Alloys and Compounds, 2014, 615, S2-S8.	5.5	82
3	Soft magnetic Fe-Co-based amorphous alloys with extremely high saturation magnetization exceeding 1.9ÂT and low coercivity of 2ÂA/m. Journal of Alloys and Compounds, 2017, 723, 376-384.	5.5	71
4	Excellent soft magnetic Fe-Co-B-based amorphous alloys with extremely high saturation magnetization above 1.85ÂT and low coercivity below 3ÂA/m. Journal of Alloys and Compounds, 2017, 711, 132-142.	5.5	70
5	High <i>B s</i> Fe84â^' <i>x</i> Si4B8P4Cu <i>x</i> (<i>x</i> = 0 – 1.5) nanocrystalline excellent magnetic softness. Journal of Applied Physics, 2011, 109, .	alloys wit	:h ₅₉
6	High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys. Journal of Alloys and Compounds, 2017, 696, 345-352.	5.5	58
7	Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82-85B13-16Si1Cu1 amorphous alloys. Journal of Alloys and Compounds, 2019, 785, 25-37.	5.5	56
8	Production methods and properties of engineering glassy alloys and composites. Intermetallics, 2015, 58, 20-30.	3.9	49
9	Development and application of Fe-based soft magnetic bulk metallic glassy inductors. Journal of Alloys and Compounds, 2018, 731, 1303-1309.	5.5	49
10	FeCo-based soft magnetic alloys with high Bs approaching 1.75ÂTÂandÂgood bending ductility. Journal of Alloys and Compounds, 2017, 691, 364-368.	5.5	48
11	Syntheses and corrosion behaviors of Fe-based amorphous soft magnetic alloys with high-saturation magnetization near 1.7 T. Journal of Materials Research, 2015, 30, 547-555.	2.6	46
12	Formation, thermal stability and mechanical properties of high entropy (Fe,Co,Ni,Cr,Mo)-B amorphous alloys. Journal of Alloys and Compounds, 2018, 732, 637-645.	5.5	46
13	Softening and good ductility for nanocrystal-dispersed amorphous Fe–Co–B alloys with high saturation magnetization above 1.7ÂT. Journal of Alloys and Compounds, 2016, 657, 237-245.	5.5	44
14	Formation, stability and ultrahigh strength of novel nanostructured alloys by partial crystallization of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)86‒89B11‒14 amorphous phase. Acta Materialia, 201 170, 50-61.	97,9	42
15	New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics, 2016, 76, 18-25.	3.9	41
16	Development and Applications of Highly Functional Al-based Materials by Use of Metastable Phases. Materials Research, 2015, 18, 1414-1425.	1.3	37
17	Effect of P to B concentration ratio on soft magnetic properties in FeSiBPCu nanocrystalline alloys. Journal of Applied Physics, 2012, 111, .	2.5	35
18	Novel deformation-induced polymorphic crystallization and softening of Al-based amorphous alloys. Acta Materialia, 2018, 147, 90-99.	7.9	35

#	Article	IF	CITATIONS
19	Soft magnetic properties of Fe82-83B14-15Si2C0.5-1 amorphous alloys with high saturation magnetization above 1.7 T. Journal of Non-Crystalline Solids, 2018, 500, 173-180.	3.1	30
20	Influence of ejection temperature on structure and glass transition behavior for Zr-based rapidly quenched disordered alloys. Acta Materialia, 2016, 116, 370-381.	7.9	28
21	High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys. Journal of Non-Crystalline Solids, 2019, 526, 119702.	3.1	27
22	Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys. Journal of Alloys and Compounds, 2015, 638, 197-203.	5.5	26
23	Peculiarities and usefulness of multicomponent bulk metallic alloys. Journal of Alloys and Compounds, 2017, 707, 12-19.	5.5	25
24	Soft Magnetic Materials. , 2022, , 10-23.		25
25	Fe-B-Si-C-Cu amorphous and nanocrystalline alloys with ultrahigh hardness and enhanced soft magnetic properties. Journal of Non-Crystalline Solids, 2021, 554, 120606.	3.1	25
26	Magnetic properties and magnetocaloric effect of FeCrNbYB metallic glasses with high glass-forming ability. Intermetallics, 2015, 59, 18-22.	3.9	21
27	Novel phase decomposition, good soft-magnetic and mechanical properties for high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100–B (xÂ= 9–13) amorphous alloys. Journal of Alloys and Compounds, 2020, 843, 155917.	5.5	21
28	Multifunctional self-driven origami paper-based integrated microfluidic chip to detect CRP and PAB in whole blood. Biosensors and Bioelectronics, 2022, 208, 114225.	10.1	18
29	Influence of Ag replacement on supercooled liquid region and icosahedral phase precipitation of Zr65Al7.5Ni10Cu17.5-xAgx (xÂ=Â0–17.5Âat%) glassy alloys. Journal of Alloys and Compounds, 2018, 735, 1712-1721.	5.5	17
30	Formation, thermal stability and mechanical properties of high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mo0.0625Nb0.0625)100‒Bx (xÂ= 7–14) amorphous alloys. Journal of Alloys a Compounds, 2020, 825, 153858.	nd5.5	15
31	Soft magnetic properties of bulk FeCoMoPCBSi glassy core prepared by copper mold casting. Journal of Applied Physics, 2012, 111, 07A312.	2.5	13
32	Magnetic properties and crystallization behavior of nanocrystalline FeSiBPCuAl alloys. Science China Technological Sciences, 2010, 53, 1590-1593.	4.0	11
33	Enhancement of soft magnetic properties of FeCoNbB nanocrystalline alloys with Cu and Ni additions. Thin Solid Films, 2011, 519, 8280-8282.	1.8	10
34	Sub-Tg relaxation and multi-stage glass transition behavior for bulk glassy alloys. Journal of Alloys and Compounds, 2015, 643, S11-S16.	5.5	9
35	Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys. Scientific Reports, 2017, 7, 46113.	3.3	9
36	SENNTIX-type amorphous alloys with high B s and improved corrosion resistance. Journal of Alloys and Compounds, 2017, 707, 195-198.	5.5	9

#	Article	IF	CITATIONS
37	Liquid ejection temperature dependence of structure and glass transition behavior for rapidly solidified Zr-Al-M (M=Ni, Cu or Co) ternary glassy alloys. Journal of Alloys and Compounds, 2018, 739, 1104-1114.	5.5	9
38	Multicomponent bulk metallic glasses with elevated-temperature resistance. MRS Bulletin, 2019, 44, 867-872.	3.5	9
39	Effect of Cu additions on the magnetic properties and microstructure of FeCoNbB nanocrystalline alloy. Applied Physics A: Materials Science and Processing, 2012, 108, 211-215.	2.3	8
40	Influence of Ag replacement on the formation and heating-induced phase decomposition of Zr65Al7.5Co27.5-xAgx (x=5 to 20†at%) glassy alloys. Journal of Alloys and Compounds, 2019, 783, 545-554.	5.5	8
41	Effects of Cu and P on Crystallization and Magnetic Properties of FeSiB Alloy. IEEE Transactions on Magnetics, 2011, 47, 3180-3183.	2.1	7
42	Formation, structure and properties of pseudo-high entropy clustered bulk metallic glasses. Journal of Alloys and Compounds, 2020, 820, 153164.	5.5	7
43	Icosahedral and dodecagonal quasicrystal plus glass alloys with plastic deformability. Acta Materialia, 2020, 199, 1-8.	7.9	7
44	High formability of glass plus fcc-Al phases in rapidly solidified Al-based multicomponent alloy. Journal of Materials Science, 2017, 52, 1246-1254.	3.7	6
45	Plastic Zr-Al-Ni-Cu-Ag bulk glassy alloys containing quasicrystalline or β-Zr plus ω-Zr phases. Acta Materialia, 2022, 229, 117812.	7.9	6
46	Effect of yttrium on thermal stability and crystallization behavior of Nd60Fe20Al10Ni10 amorphous alloys. Journal of Rare Earths, 2008, 26, 735-740.	4.8	5
47	Novel heating- and deformation-induced phase transitions and mechanical properties for multicomponent Zr50M50, Zr50(M,Ag)50 and Zr50(M,Pd)50 (MÂ=ÂFe,Co,Ni,Cu) amorphous alloys. Journal of Materials Science and Technology, 2022, 104, 109-118.	10.7	5
48	Bulk Metallic Classes: Formation and Applications. , 2016, , .		3
49	Phase decomposition and mechanical properties of pseudo-high entropy Zr65(Al,Fe,Co,Ni,M)35 (M=Cu,) Tj ETQq	1 1 0.7843	314 rgBT /O
50	Zr-rich Zr-Al-Ni-Ag metallic glass composites with high strength and plastic strain. Journal of Alloys and Compounds, 2022, 918, 165683.	5.5	3
51	Annealing-induced enthalpy relaxation behavior of Ni-Pd-P-B bulk glassy type alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 250-255.	5.6	2
52	Compositional influence on heating-induced clustered glass formation for multicomponent Zr55-60Al10(Co,Ni,Cu,Ag)30-35 alloys. Intermetallics, 2021, 135, 107233.	3.9	2
53	Syntheses and Fundamental Properties of Fe-rich Metastable Phase Alloys with Saturation Magnetization Exceeding 1.9 T. Materials Research, 2015, 18, 127-135.	1.3	1
54	Ultrahigh thermal stability and hardness of nano-mixed fcc-Al and amorphous phases for multicomponent Al-based alloys. Journal of Alloys and Compounds, 2020, 832, 154997.	5.5	1

#	Article	IF	CITATIONS
55	Solidification Atmosphere and Glass-Forming Ability of Engineering Important Fe- and Zr-Based Bulk Glassy Alloys. Transactions of the Indian Institute of Metals, 2015, 68, 1131-1136.	1.5	0
56	Syntheses and Fundamental Properties of Cr/Mo-Adoped Fe-Rich Alloys With Metastable Phase and Saturation Magnetization Near 1.9 T. Materials Research, 2016, 19, 1299-1303.	1.3	0
57	Features and Prospects of Multicomponent Metallic Glasses. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 37-44.	0.2	Ο
58	Iron-Based Magnetocaloric Materials. , 2022, , 433-439.		0