
Krystal L Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363567/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deletion of the voltageâ€gated calcium channel, <scp>Ca_V1</scp> .3, causes deficits in motor performance and associative learning. Genes, Brain and Behavior, 2022, 21, e12791.	2.2	5
2	Posterior Fossa Sub-Arachnoid Cysts Observed in Patients with Bipolar Disorder: a Retrospective Cohort Study. Cerebellum, 2022, , .	2.5	1
3	Cerebellar D1DR-expressing neurons modulate the frontal cortex during timing tasks. Neurobiology of Learning and Memory, 2020, 170, 107067.	1.9	6
4	Editorial: Cerebellar function. Neurobiology of Learning and Memory, 2020, 170, 107212.	1.9	0
5	Virtual Brain Projection for Evaluating Trans-skull Beam Behavior of Transcranial Ultrasound Devices. Ultrasound in Medicine and Biology, 2019, 45, 1850-1856.	1.5	11
6	Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia. Cerebellum, 2019, 18, 489-499.	2.5	28
7	The Role of the Cerebellum in Cognitive and Affective Processes. , 2018, , .		1
8	Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Molecular Psychiatry, 2017, 22, 647-655.	7.9	99
9	Rodent Medial Frontal Control of Temporal Processing in the Dorsomedial Striatum. Journal of Neuroscience, 2017, 37, 8718-8733.	3.6	118
10	Corticostriatal Field Potentials Are Modulated at Delta and Theta Frequencies during Interval-Timing Task in Rodents. Frontiers in Psychology, 2016, 7, 459.	2.1	38
11	Autoantibodies to Collagen XVII Are Present in Parkinson's Disease and Localize to Tyrosine-Hydroxylase Positive Neurons. Journal of Investigative Dermatology, 2016, 136, 721-723.	0.7	31
12	Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience, 2016, 18, 99-107.	3.7	15
13	Infusion of D1 Dopamine Receptor Agonist into Medial Frontal Cortex Disrupts Neural Correlates of Interval Timing. Frontiers in Behavioral Neuroscience, 2015, 9, 294.	2.0	47
14	Medial frontal â^¼4-Hz activity in humans and rodents is attenuated in PD patients and in rodents with cortical dopamine depletion. Journal of Neurophysiology, 2015, 114, 1310-1320.	1.8	83
15	Timing Tasks Synchronize Cerebellar and Frontal Ramping Activity and Theta Oscillations: Implications for Cerebellar Stimulation in Diseases of Impaired Cognition. Frontiers in Psychiatry, 2015, 6, 190.	2.6	16
16	The therapeutic potential of the cerebellum in schizophrenia. Frontiers in Systems Neuroscience, 2014, 8, 163.	2.5	66
17	D ₁ -Dependent 4 Hz Oscillations and Ramping Activity in Rodent Medial Frontal Cortex during Interval Timing. Journal of Neuroscience, 2014, 34, 16774-16783.	3.6	102
18	Consensus Paper: The Cerebellum's Role in Movement and Cognition. Cerebellum, 2014, 13, 151-177.	2.5	815

KRYSTAL L PARKER

#	Article	IF	CITATIONS
19	Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance. Neuroscience, 2013, 255, 246-254.	2.3	42
20	Eyeblink conditioning in unmedicated schizophrenia patients: A positron emission tomography study. Psychiatry Research - Neuroimaging, 2013, 214, 402-409.	1.8	25
21	Executive dysfunction in Parkinson's disease and timing deficits. Frontiers in Integrative Neuroscience, 2013, 7, 75.	2.1	80
22	Eyeblink Conditioning in Healthy Adults: A Positron Emission Tomography Study. Cerebellum, 2012, 11, 946-956.	2.5	23
23	Blocking GABAA neurotransmission in the interposed nuclei: Effects on conditioned and unconditioned eyeblinks. Brain Research, 2009, 1292, 25-37.	2.2	20
24	Inactivating the middle cerebellar peduncle abolishes the expression of short-latency conditioned eyeblinks. Brain Research, 2009, 1303, 32-38.	2.2	0
25	The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience, 2009, 162, 787-796.	2.3	74