Pradeep K Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech, 2022, 12, 51.	2.2	7
2	Development of a high-frequency adventitious shoot regeneration using cotyledon explants of an important oilseed crop Sesamum indicum L In Vitro Cellular and Developmental Biology - Plant, 2022, 58, 470-478.	2.1	4
3	Expression of B. subtilis Phytase gene driven by fruit specific E8 promoter for enhanced minerals, metabolites and phytonutrient in cucumber fruit. Food Research International, 2022, 156, 111138.	6.2	4
4	Overexpression of AlNAC1 from recretohalophyte Aeluropus lagopoides alleviates drought stress in transgenic tobacco. Environmental and Experimental Botany, 2021, 181, 104277.	4.2	4
5	Artificial miRNA mediated resistance in tobacco against Jatropha leaf curl Gujarat virus by targeting RNA silencing suppressors. Scientific Reports, 2021, 11, 890.	3.3	5
6	AlRab7 from Aeluropus lagopoides ameliorates ion toxicity in transgenic tobacco by regulating hormone signaling and reactive oxygen species homeostasis. Physiologia Plantarum, 2021, 173, 1448-1462.	5.2	3
7	Molecular cloning and characterization of high-affinity potassium transporter (AlHKT2;1) gene promoter from halophyte Aeluropus lagopoides. International Journal of Biological Macromolecules, 2021, 181, 1254-1264.	7.5	7
8	Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Research, 2021, 58, 102363.	4.6	23
9	Overexpression of JcWRKY2 confers increased resistance towards Macrophomina phaseolina in transgenic tobacco. 3 Biotech, 2020, 10, 490.	2.2	8
10	The AlRabring7 E3-Ub-ligase mediates AlRab7 ubiquitination and improves ionic and oxidative stress tolerance in Saccharomyces cerevisiae. Plant Physiology and Biochemistry, 2020, 151, 689-704.	5.8	1
11	Special Adaptive Features of Plant Species in Response to Salinity. Signaling and Communication in Plants, 2020, , 53-76.	0.7	5
12	Sargassum seaweed extract enhances Macrophomina phaseolina resistance in tomato by regulating phytohormones and antioxidative activity. Journal of Applied Phycology, 2020, 32, 4373-4384.	2.8	14
13	Functional Validation of <i>JcWRKY2</i> , a Group III Transcription Factor Toward Mitigating Salinity Stress in Transgenic Tobacco. DNA and Cell Biology, 2019, 38, 1278-1291.	1.9	7
14	Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech, 2019, 9, 395.	2.2	23
15	Geminiviruses: Molecular biodiversity and global distribution in Jatropha. Physiological and Molecular Plant Pathology, 2019, 108, 101439.	2.5	4
16	SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system. Functional Plant Biology, 2019, 46, 702.	2.1	26
17	The JcWRKY tobacco transgenics showed improved photosynthetic efficiency and wax accumulation during salinity. Scientific Reports, 2019, 9, 19617.	3.3	18
18	Kappaphycus alvarezii sap mitigates abiotic-induced stress in Triticum durum by modulating metabolic coordination and improves growth and yield. Journal of Applied Phycology, 2018, 30, 2659-2673.	2.8	40

PRADEEP K AGARWAL

#	Article	IF	CITATIONS
19	Ectopic Expression of <i>JcWRKY</i> Confers Enhanced Resistance in Transgenic Tobacco Against <i>Macrophomina phaseolina</i> . DNA and Cell Biology, 2018, 37, 298-307.	1.9	7
20	Transcription Factor-Based Genetic Engineering for Salinity Tolerance in Crops. , 2018, , 185-211.		3
21	AlNAC4 Transcription Factor From Halophyte Aeluropus lagopoides Mitigates Oxidative Stress by Maintaining ROS Homeostasis in Transgenic Tobacco. Frontiers in Plant Science, 2018, 9, 1522.	3.6	17
22	Transcriptional regulation of salinity stress: role and spatio-temporal expressions of ion-transporter gene promoters. Biologia Plantarum, 2018, 62, 641-646.	1.9	10
23	Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. Journal of Experimental Botany, 2017, 68, 2135-2148.	4.8	144
24	Chemical Derivatization of Metabolite Mass Profiling of the Recretohalophyte Aeluropus lagopoides Revealing Salt Stress Tolerance Mechanism. Marine Biotechnology, 2017, 19, 207-218.	2.4	19
25	Improved Shoot Regeneration, Salinity Tolerance and Reduced Fungal Susceptibility in Transgenic Tobacco Constitutively Expressing PR-10a Gene. Frontiers in Plant Science, 2016, 7, 217.	3.6	22
26	A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K+/Na+ Ratio, and Antioxidant Machinery. Frontiers in Plant Science, 2016, 7, 737.	3.6	30
27	Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling. Frontiers in Plant Science, 2016, 7, 1541.	3.6	29
28	MSAP marker based DNA methylation study in Salicornia brachiata DREB2A transgenic tobacco. Plant Gene, 2016, 6, 77-81.	2.3	7
29	Insights into the role of seaweed Kappaphycus alvarezii sap towards phytohormone signalling and regulating defence responsive genes in Lycopersicon esculentum. Journal of Applied Phycology, 2016, 28, 2529-2537.	2.8	38
30	Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB PLANTS, 2015, 7, plv054.	2.3	35
31	Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, 2015, 6, 537.	3.6	226
32	A Low-Affinity K+ Transporter AlHKT2;1 from Recretohalophyte Aeluropus lagopoides Confers Salt Tolerance in Yeast. Molecular Biotechnology, 2015, 57, 489-498.	2.4	24
33	Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta, 2015, 242, 1291-1308.	3.2	41
34	Soil microbial diversity shift as affected by conversion of shallow and rocky wastelands to <i>Jatropha curcas</i> L. plantation. International Journal of Environmental Studies, 2015, 72, 631-649.	1.6	0
35	An economical and efficient protocol for total RNA isolation fromJatropha curcas. International Journal of Environmental Studies, 2015, 72, 624-630.	1.6	4
36	Ion homeostasis in a salt-secreting halophytic grass. AoB PLANTS, 2015, 7, plv055.	2.3	50

PRADEEP K AGARWAL

#	Article	IF	CITATIONS
37	Somatic embryogenesis and in vitro plantlet regeneration in Salicornia brachiata Roxb Plant Cell, Tissue and Organ Culture, 2015, 120, 355-360.	2.3	26
38	High-frequency in vitro shoot regeneration in Cucumis sativus by inhibition of endogenous auxin. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 729-737.	2.1	14
39	A Dehydration-Responsive Element Binding (DREB) Transcription Factor from the Succulent Halophyte Salicornia brachiata Enhances Abiotic Stress Tolerance in Transgenic Tobacco. Marine Biotechnology, 2014, 16, 657-673.	2.4	44
40	Molecular Cloning and Characterization of a Group II WRKY Transcription Factor fromJatropha curcas, an Important Biofuel Crop. DNA and Cell Biology, 2014, 33, 503-513.	1.9	25
41	Bioengineering for Salinity Tolerance in Plants: State of the Art. Molecular Biotechnology, 2013, 54, 102-123.	2.4	220
42	The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 2012, 12, 188.	3.6	147
43	The SbASR-1 Gene Cloned from an Extreme Halophyte Salicornia brachiata Enhances Salt Tolerance in Transgenic Tobacco. Marine Biotechnology, 2012, 14, 782-792.	2.4	50
44	Improved Salinity Tolerance of Arachis hypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2012, 31, 195-206.	5.1	256
45	A novel salt-inducible gene SbSI-1 from Salicornia brachiata confers salt and desiccation tolerance in E. coli. Molecular Biology Reports, 2012, 39, 1943-1948.	2.3	15
46	Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Molecular Biology Reports, 2011, 38, 1965-1973.	2.3	54
47	SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Reports, 2010, 29, 1131-1137.	5.6	72
48	Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Molecular Biology Reports, 2010, 37, 981-986.	2.3	43
49	Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 2010, 37, 1125-1135.	2.3	153
50	Accumulation of heavy metals and its biochemical responses in <i>Salicornia brachiata</i> , an extreme halophyte. Marine Biology Research, 2010, 6, 511-518.	0.7	78
51	Plant Rabs: Characterization, Functional Diversity, and Role in Stress Tolerance. Plant Molecular Biology Reporter, 2009, 27, 417-430.	1.8	32
52	Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes and Genetic Systems, 2009, 84, 111-120.	0.7	61
53	Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Reports, 2007, 27, 105-115.	5.6	65
54	Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Molecular Genetics and Genomics, 2007, 277, 189-198.	2.1	106

#	ARTICLE	IF	CITATIONS
55	PCIB an Antiauxin Enhances Microspore Embryogenesis in Microspore Culture of Brassica juncea. Plant Cell, Tissue and Organ Culture, 2006, 86, 201-210.	2.3	42
56	Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 2006, 25, 1263-1274.	5.6	864