
Pavel Pt Sukhanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635363/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic-liquid-modified magnetite nanoparticles for MSPE-GC-MS determination of 2,4-D butyl ester and its metabolites in water, soil, and bottom sediments. Environmental Nanotechnology, Monitoring and Management, 2022, 17, 100652.	1.7	3
2	Monitoring of phenols in natural waters and bottom sediments: preconcentration on a magnetic sorbent, GC–MS analysis, and weather observations. Chemical Papers, 2021, 75, 1445-1456.	1.0	8
3	Determination of phenols in natural and waste waters by capillary electrophoresis after preconcentration on magnetic nanoparticles coated with aminated hypercrosslinked polystyrene. Journal of Separation Science, 2021, 44, 1978-1988.	1.3	2
4	Effect of Swelling of N-Vinylpyrrolidone-Based Polymers on Sorption of Nitrophenols. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 268-271.	0.3	0
5	Synthesis of Magnetic Sorbents Based on Magnetite Nanoparticles and Humic Acids and Their Application for Sorption of Phenolic Ecotoxicants. Izvestiya of Saratov University New Series Series: Chemistry Biology Ecology, 2020, 20, 244-253.	0.0	0
6	Adsorption of Nitrophenols from Aqueous Media by N-Vinylpyrrolidone-Based Polymeric Adsorbents. Moscow University Chemistry Bulletin, 2019, 74, 88-92.	0.2	4
7	Use of Molecularly Imprinted Polymer for the Preconcentration of 4-Nitrophenol from Aqueous Media. Journal of Analytical Chemistry, 2019, 74, 11-17.	0.4	2
8	Extraction of Phenols From Aqueous Solutions by Magnetic Sorbents Modified with Humic Acids. Moscow University Chemistry Bulletin, 2019, 74, 257-264.	0.2	4
9	Sorption of carbaryl, 2,4-dichlorophenoxyacetic acid and their metabolites with a polymeric sorbent based on N-vinylpyrrolidone. Chemical Engineering, 2019, , 247-251.	0.1	0
10	Recovery of Phenols From Waste Waters by an Encapsulated Magnetic Sorbent. Chemical and Petroleum Engineering (English Translation of Khimicheskoe I Neftyanoe Mashinostroenie), 2018, 53, 674-678.	0.1	1
11	Recovery and Preconcentration of Phenols from Aqueous Solutions with a Magnetic Sorbent Based on Fe3O4 Nanoparticles and Hyper-Cross-Linked Polystyrene. Russian Journal of Applied Chemistry, 2018, 91, 1626-1634.	0.1	8
12	Benzoic and Salicylic acids concentration and determination in food and water mediums. Analitika I Kontrol, 2018, 22, 92-116.	0.3	3
13	Chromatographic determination of nitrophenols in aqueous media after two-stage preconcentration using an N-vinylpyrrolidone-based polymer. Journal of Analytical Chemistry, 2017, 72, 468-472.	0.4	18
14	Sorption of aromatic acids from aqueous solutions by polymer based on N-vinylpyrrolidone. Russian Journal of Applied Chemistry, 2016, 89, 891-896.	0.1	1
15	Adsorption preconcentration of 4-nitrophenol from aqueous solutions using polymers based on cyclic N-vinylamides. Journal of Analytical Chemistry, 2015, 70, 130-135.	0.4	5
16	Synergism and antagonism in extracting local anesthetics from aqueous media with mixtures of solvents. Russian Journal of Physical Chemistry A, 2014, 88, 2220-2224.	0.1	0
17	Dynamic sorption of nitrophenols from aqueous solutions by polymers based on N-Vinylpyrrolidone. Russian Journal of Applied Chemistry, 2014, 87, 579-584.	0.1	4
18	Thermodynamics of nitrophenols sorption from aqueous media with N-vinylpyrrolidone-based polymer. Russian Journal of General Chemistry, 2013, 83, 2032-2036.	0.3	4

PAVEL PT SUKHANOV

#	Article	IF	CITATIONS
19	Sorption of carbaryl and naphthols by polymers based on N-vinylamides from aqueous solutions. Russian Journal of Applied Chemistry, 2013, 86, 1292-1297.	0.1	1
20	New N-vinylamide-based polymers for the preconcetration of nitrophenols from aqueous media. Journal of Analytical Chemistry, 2012, 67, 767-771.	0.4	6
21	The distribution coefficients of phenol and substituted phenols in the ammonium sulfate-poly-N-vinylpyrrolidone-water system. Russian Journal of Physical Chemistry A, 2011, 85, 568-572.	0.1	5
22	Extraction-chromatographic determination of sulfonated azo dyes in aqueous solutions. Journal of Analytical Chemistry, 2010, 65, 460-465.	0.4	5
23	Effective systems based on hydrophilic polymers for extraction of phenols from aqueous solutions. Russian Journal of Applied Chemistry, 2010, 83, 1054-1058.	0.1	6
24	Extraction and preconcentration of anthocyan dye from aqueous solutions with water-soluble poly-N-vinylamides. Russian Journal of Applied Chemistry, 2008, 81, 726-729.	0.1	6
25	Two-stage extraction preconcentration and HPLC determination of phenol and 1-naphthol in aqueous solutions. Journal of Analytical Chemistry, 2007, 62, 1122-1125.	0.4	1
26	Recovery of anthocyan dye from aqueous-salt solutions with polyethylene glycol PEG-5000. Russian Journal of Applied Chemistry, 2007, 80, 2104-2106.	0.1	1
27	Extraction-chromatographic determination of hydroxysulfo compounds. Journal of Analytical Chemistry, 2006, 61, 20-24.	0.4	0
28	Extraction of naphtholsulfonic acids from aqueous solutions with the use of a rotating concentrating unit and their photometric determination in the back extract. Journal of Analytical Chemistry, 2006, 61, 325-328.	0.4	0
29	Extraction of Aromatic Sulfonic Acids in the Presence of a Surfactant. Russian Journal of Applied Chemistry, 2005, 78, 77-81.	0.1	0
30	Extraction Preconcentration of Naphthols and Phenol with Solvent Mixtures Impregnated into Polyurethane Foam. Journal of Analytical Chemistry, 2004, 59, 1153-1157.	0.4	3