Knut Müller-Caspary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3635297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous illumination picosecond imaging using a delay line detector in a transmission electron microscope. Ultramicroscopy, 2022, 233, 113392.	1.9	5
2	Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution. Ultramicroscopy, 2022, 233, 113425.	1.9	5
3	Angle-dependence of ADF-STEM intensities for chemical analysis of InGaN/GaN. Ultramicroscopy, 2022, 238, 113535.	1.9	4
4	Angle-resolved STEM using an iris aperture: Scattering contributions and sources of error for the quantitative analysis in Si. Ultramicroscopy, 2021, 221, 113175.	1.9	8
5	Accurate measurement of strain at interfaces in 4D-STEM: A comparison of various methods. Ultramicroscopy, 2021, 221, 113196.	1.9	10
6	Quantitative Characterization of Nanometer-Scale Electric Fields via Momentum-Resolved STEM. Nano Letters, 2021, 21, 2018-2025.	9.1	20
7	Precise measurement of the electron beam current in a TEM. Ultramicroscopy, 2021, 223, 113221.	1.9	8
8	Automated mapping of the crystallographic sample orientation from diffraction patterns in momentum-resolved STEM. Microscopy and Microanalysis, 2021, 27, 1444-1445.	0.4	1
9	Quantitative characterization of nanometer-scale electric fields via momentum-resolved STEM. Microscopy and Microanalysis, 2021, 27, 2206-2207.	0.4	0
10	Live Processing of Momentum-Resolved STEM Data for First Moment Imaging and Ptychography. Microscopy and Microanalysis, 2021, 27, 1078-1092.	0.4	13
11	4D-STEM at interfaces to GaN: Centre-of-mass approach & NBED-disc detection. Ultramicroscopy, 2021, 228, 113321.	1.9	9
12	Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope. Applied Sciences (Switzerland), 2021, 11, 9058.	2.5	10
13	Highâ€ <i>T</i> _C Interfacial Ferromagnetism in SrMnO ₃ /LaMnO ₃ Superlattices. Advanced Functional Materials, 2020, 30, 1808270.	14.9	31
14	Direct measurement of electrostatic potentials at the atomic scale: A conceptual comparison between electron holography and scanning transmission electron microscopy. Ultramicroscopy, 2020, 210, 112926.	1.9	15
15	Direct Mapping of Electrostatic Potentials by Momentum-resolved STEM and Electron Holography - A Conceptual Comparison. Microscopy and Microanalysis, 2020, 26, 18-20.	0.4	1
16	Quantitative Simulation of Four-dimensional STEM Datasets. Microscopy and Microanalysis, 2020, 26, 250-251.	0.4	0
17	Influence of plasmon excitations on atomic-resolution quantitative 4D scanning transmission electron microscopy. Scientific Reports, 2020, 10, 17890.	3.3	21
18	Atom column detection from simultaneously acquired ABF and ADF STEM images. Ultramicroscopy, 2020, 219, 113046.	1.9	15

KNUT Müller-Caspary

#	Article	IF	CITATIONS
19	Citric Acid Based Carbon Dots with Amine Type Stabilizers: pH-Specific Luminescence and Quantum Yield Characteristics. Journal of Physical Chemistry C, 2020, 124, 8894-8904.	3.1	63
20	LiberTEM: Software platform for scalable multidimensional data processing in transmission electron microscopy. Journal of Open Source Software, 2020, 5, 2006.	4.6	26
21	Matching different symmetries with an atomically sharp interface: Epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:n on Si(001). Physical Review Materials, 2020, 4, .</mml:n </mml:msub></mml:mrow></mml:math 	זר 22 к/mm	ıl:mon>
22	Selfâ€Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials, 2019, 29, 1903120.	14.9	9
23	Spectroscopic coincidence experiments in transmission electron microscopy. Applied Physics Letters, 2019, 114, .	3.3	19
24	Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy. Physical Review Letters, 2019, 122, 106102.	7.8	31
25	Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose. Ultramicroscopy, 2019, 203, 95-104.	1.9	29
26	Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction. Ultramicroscopy, 2019, 196, 74-82.	1.9	15
27	Ultrathin Au-Alloy Nanowires at the Liquid–Liquid Interface. Nano Letters, 2018, 18, 1903-1907.	9.1	31
28	Demonstration of a 2â€ [–] ×â€ [–] 2 programmable phase plate for electrons. Ultramicroscopy, 2018, 190, 58-65.	1.9	80
29	Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation. Ultramicroscopy, 2018, 184, 29-36.	1.9	17
30	Measurement of local crystal lattice strain variations in dealloyed nanoporous gold. Materials Research Letters, 2018, 6, 84-92.	8.7	10
31	Atomic-scale quantification of charge densities in two-dimensional materials. Physical Review B, 2018, 98, .	3.2	36
32	Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9515-9520.	7.1	56
33	Spatially resolved luminescence properties of non- and semi-polar InGaN quantum wells on GaN microrods. Journal Physics D: Applied Physics, 2018, 51, 355102.	2.8	2
34	Strain analysis from nano-beam electron diffraction: Influence of specimen tilt and beam convergence. Ultramicroscopy, 2018, 190, 45-57.	1.9	17
35	Optimization of NBED simulations for disc-detection measurements. Ultramicroscopy, 2017, 181, 50-60.	1.9	13
36	The microstructure, local indium composition and photoluminescence in greenâ€emitting InGaN/GaN quantum wells. Journal of Microscopy, 2017, 268, 305-312.	1.8	3

KNUT Müller-Caspary

#	Article	IF	CITATIONS
37	Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy, 2017, 178, 62-80.	1.9	106
38	Quantitative STEM: Comparative Studies of Composition and Optical Properties of Semiconductor Quantum Structures. Microscopy and Microanalysis, 2017, 23, 1690-1691.	0.4	0
39	STEM Strain Measurement From a Stream of Diffraction Patterns Recorded on a Pixel-Free Delay-Line Detector. Microscopy and Microanalysis, 2016, 22, 520-521.	0.4	0
40	Composition analysis of coaxially grown InGaN multi quantum wells using scanning transmission electron microscopy. Journal of Applied Physics, 2016, 119, 175701.	2.5	0
41	Direct Measurement of Polarization-Induced Fields in GaN/AlN by Nano-Beam Electron Diffraction. Scientific Reports, 2016, 6, 28459.	3.3	25
42	Nanoscopic Insights into InGaN/GaN Core–Shell Nanorods: Structure, Composition, and Luminescence. Nano Letters, 2016, 16, 5340-5346.	9.1	43
43	Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures. Physica Status Solidi (B): Basic Research, 2016, 253, 140-144.	1.5	31
44	Ultrasmooth Ru(0001) Films as Templates for Ceria Nanoarchitectures. Crystal Growth and Design, 2016, 16, 4216-4224.	3.0	15
45	Materials characterisation by angle-resolved scanning transmission electron microscopy. Scientific Reports, 2016, 6, 37146.	3.3	33
46	A pnCCD-based, fast direct single electron imaging camera for TEM and STEM. Journal of Instrumentation, 2016, 11, P04006-P04006.	1.2	97
47	Sample tilt effects on atom column position determination in ABF–STEM imaging. Ultramicroscopy, 2016, 160, 110-117.	1.9	47
48	Effects of instrument imperfections on quantitative scanning transmission electron microscopy. Ultramicroscopy, 2016, 161, 146-160.	1.9	55
49	Messung atomarer elektrischer Felder. Physik in Unserer Zeit, 2015, 46, 110-111.	0.0	0
50	Homogeneity and composition of AllnGaN: A multiprobe nanostructure study. Ultramicroscopy, 2015, 156, 29-36.	1.9	14
51	Two-dimensional strain mapping in semiconductors by nano-beam electron diffraction employing a delay-line detector. Applied Physics Letters, 2015, 107, .	3.3	38
52	Theoretical study of precision and accuracy of strain analysis by nano-beam electron diffraction. Ultramicroscopy, 2015, 158, 38-48.	1.9	43
53	Near-surface depletion of antimony during the growth of GaAsSb and GaAs/GaAsSb nanowires. Journal of Applied Physics, 2014, 116, 144303.	2.5	18
54	Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 μm. Applied Physics Letters, 2014, 105, 152102.	3.3	19

#	Article	IF	CITATIONS
55	A study of the initial stages of the growth of Au-assisted epitaxial Ge nanowires on a clean Ge(100) surface. CrystEngComm, 2014, 16, 2486.	2.6	7
56	Wrinkling of Atomic Planes in Ultrathin Au Nanowires. Nano Letters, 2014, 14, 4859-4866.	9.1	35
57	A nanocrystalline Hilbert phase-plate for phase-contrast transmission electron microscopy. Ultramicroscopy, 2014, 139, 29-37.	1.9	7
58	Simultaneous Quantification of Indium and Nitrogen Concentration in InGaNAs Using HAADF-STEM. Microscopy and Microanalysis, 2014, 20, 1740-1752.	0.4	20
59	Influence of Static Atomic Displacements on Composition Quantification of AlGaN/GaN Heterostructures from HAADF-STEM Images. Microscopy and Microanalysis, 2014, 20, 1463-1470.	0.4	11
60	Measurement of indium concentration profiles and segregation efficiencies from high-angle annular dark field-scanning transmission electron microscopy images. Ultramicroscopy, 2013, 131, 1-9.	1.9	18
61	Synthesis Route for the Self-Assembly of Submicrometer-Sized Colloidosomes with Tailorable Nanopores. Chemistry of Materials, 2013, 25, 3464-3471.	6.7	47
62	Comparison of intensity and absolute contrast of simulated and experimental high-resolution transmission electron microscopy images for different multislice simulation methods. Ultramicroscopy, 2013, 134, 94-101.	1.9	25
63	Quantitative chemical evaluation of dilute GaNAs using ADF STEM: Avoiding surface strain induced artifacts. Ultramicroscopy, 2013, 129, 1-9.	1.9	29
64	Nano scale phase separation in Au-Ge system on ultra clean Si(100) surfaces. Journal of Applied Physics, 2012, 111, 104319.	2.5	6
65	Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Applied Physics Letters, 2012, 101, 212110.	3.3	63
66	Strain Measurement in Semiconductor Heterostructures by Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2012, 18, 995-1009.	0.4	62
67	Bulk and Surface Excitons in Alloyed and Phase-Separated ZnO–MgO Particulate Systems. ACS Applied Materials & Interfaces, 2012, 4, 2490-2497.	8.0	10
68	Determination of the chemical composition of GaNAs using STEM HAADF imaging and STEM strain state analysis. Ultramicroscopy, 2012, 117, 15-23.	1.9	79
69	Toward Simultaneous Assessment of In and N in InGaAsN Alloys by Quantitative STEM-ADF Imaging. Microscopy and Microanalysis, 2011, 17, 1862-1863.	0.4	3
70	Composition mapping in InGaN by scanning transmission electron microscopy. Ultramicroscopy, 2011, 111, 1316-1327.	1.9	156
71	Microstructural and compositional analyses of GaNâ€based nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 1822-1836.	1.5	4
72	DC heating induced shape transformation of Ge structures on ultraclean Si(5 5 12) surfaces. Journal of Physics Condensed Matter, 2011, 23, 135002.	1.8	4

#	Article	IF	CITATIONS
73	Nanostructured Praseodymium Oxide: Correlation Between Phase Transitions and Catalytic Activity. ChemCatChem, 2010, 2, 694-704.	3.7	33
74	Refinement of the 200 structure factor for GaAs using parallel and convergent beam electron nanodiffraction data. Ultramicroscopy, 2009, 109, 802-814.	1.9	11
75	Measurement of specimen thickness and composition in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si20.gif" overflow="scroll"><mmi:msub><mmi:mi>Al</mmi:mi><mmi:mi>x</mmi:mi>altime="normal">N<mmi:mi>/</mmi:mi>GaNusing</mmi:msub></mmi:math 	:mixx/mm	l:mucosw>
76	Nigh-angle annular dark field image. Ultramicroscopy, 2009, 109, 1171-1182. Visibility and Apparent Size of Néel-Type Magnetic Skyrmions in Fresnel Defocus Images of Multilayer Films. Microscopy and Microanalysis, 0, , 1-10.	0.4	2