Motohiro Nishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634697/publications.pdf

Version: 2024-02-01

66234 60497 7,134 116 42 81 citations h-index g-index papers 137 137 137 7909 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cardiac robustness regulated by reactive sulfur species. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 1-6.	0.6	3
2	Redox-dependent internalization of the purinergic P2Y ₆ receptor limits colitis progression. Science Signaling, 2022, 15, eabj0644.	1.6	12
3	Lysophosphatidic Acid Promotes the Expansion of Cancer Stem Cells via TRPC3 Channels in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 1967.	1.8	7
4	Eco-pharma research focusing on ACE2-mediated SARS-CoV-2 entry. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2022, 95, 2-S15-3.	0.0	0
5	Long-Acting Thioredoxin Ameliorates Doxorubicin-Induced Cardiomyopathy via Its Anti-Oxidative and Anti-Inflammatory Action. Pharmaceutics, 2022, 14, 562.	2.0	4
6	Drug repurposing for the treatment of COVID-19. Journal of Pharmacological Sciences, 2022, 149, 108-114.	1.1	12
7	Protective roles of MITOL against myocardial senescence and ischemic injury partly via Drp1 regulation. IScience, 2022, 25, 104582.	1.9	7
8	A TRPC3/6 Channel Inhibitor Promotes Arteriogenesis after Hind-Limb Ischemia. Cells, 2022, 11, 2041.	1.8	2
9	Introduction to serial reviews: Recent developments in research of reactive sulfur species. Journal of Clinical Biochemistry and Nutrition, 2021, 68, 4-4.	0.6	0
10	4. Eco-pharma Research Aimed at Therapeutic Agents for Amyotrophic Diseases. Japanese Journal of Clinical Pharmacology and Therapeutics, 2021, 52, 39-42.	0.1	0
11	Deletion of TRPC3 or TRPC6 Fails to Attenuate the Formation of Inflammation and Fibrosis in Non-alcoholic Steatohepatitis. Biological and Pharmaceutical Bulletin, 2021, 44, 431-436.	0.6	7
12	Cold Atmospheric Plasma Modification of Amyloid \hat{l}^2 . International Journal of Molecular Sciences, 2021, 22, 3116.	1.8	3
13	Sulfide catabolism ameliorates hypoxic brain injury. Nature Communications, 2021, 12, 3108.	5.8	71
14	Structural library and visualization of endogenously oxidized phosphatidylcholines using mass spectrometry-based techniques. Nature Communications, 2021, 12, 6339.	5.8	24
15	Mitochondrial dynamics in exercise physiology. Pflugers Archiv European Journal of Physiology, 2020, 472, 137-153.	1.3	32
16	Modulation of P2Y6R expression exacerbates pressure overload-induced cardiac remodeling in mice. Scientific Reports, 2020, 10, 13926.	1.6	11
17	TRPC Channels in Cardiac Plasticity. Cells, 2020, 9, 454.	1.8	15
18	Canonical Transient Receptor Potential Channels and Vascular Smooth Muscle Cell Plasticity. Journal of Lipid and Atherosclerosis, 2020, 9, 124.	1.1	16

#	Article	IF	CITATIONS
19	Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload. Science Signaling, 2019, 12, .	1.6	25
20	TRPC3-Nox2 axis mediates nutritional deficiency-induced cardiomyocyte atrophy. Scientific Reports, 2019, 9, 9785.	1.6	18
21	Ibudilast attenuates doxorubicinâ€induced cytotoxicity by suppressing formation of TRPC3 channel and NADPH oxidase 2 protein complexes. British Journal of Pharmacology, 2019, 176, 3723-3738.	2.7	30
22	TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potentialâ€dependent coupling with PTEN. FASEB Journal, 2019, 33, 9785-9796.	0.2	27
23	TRPC channels in exercise-mimetic therapy. Pflugers Archiv European Journal of Physiology, 2019, 471, 507-517.	1.3	13
24	2-Oxo-histidine–containing dipeptides are functional oxidation products. Journal of Biological Chemistry, 2019, 294, 1279-1289.	1.6	39
25	Involvement of nitric oxide/reactive oxygen species signaling via 8-nitro-cGMP formation in 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells and rat cerebellar granule neurons. Biochemical and Biophysical Research Communications, 2018, 495, 2165-2170.	1.0	10
26	TRPC3 participates in angiotensin II type 1 receptor-dependent stress-induced slow increase in intracellular Ca2+ concentration in mouse cardiomyocytes. Journal of Physiological Sciences, 2018, 68, 153-164.	0.9	24
27	Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission–associated myocardial senescence. Science Signaling, 2018, 11, .	1.6	83
28	Prolonged stimulation of \hat{l}^2 2-adrenergic receptor with \hat{l}^2 2-agonists impairs insulin actions in H9c2 cells. Journal of Pharmacological Sciences, 2018, 138, 184-191.	1.1	13
29	Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Advances in Microbial Physiology, 2018, 72, 1-28.	1.0	25
30	TRPC5-eNOS Axis Negatively Regulates ATP-Induced Cardiomyocyte Hypertrophy. Frontiers in Pharmacology, 2018, 9, 523.	1.6	20
31	Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells. Free Radical Biology and Medicine, 2017, 109, 132-140.	1.3	26
32	MiR30â€GALNT1/2 Axisâ€Mediated Glycosylation Contributes to the Increased Secretion of Inactive Human Prohormone for Brain Natriuretic Peptide (proBNP) From Failing Hearts. Journal of the American Heart Association, 2017, 6, .	1.6	53
33	Purinergic P2Y6 receptors: A new therapeutic target of age-dependent hypertension. Pharmacological Research, 2017, 120, 51-59.	3.1	18
34	Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nature Communications, 2017, 8, 1177.	5.8	373
35	Exposure to Electrophiles Impairs Reactive Persulfide-Dependent Redox Signaling in Neuronal Cells. Chemical Research in Toxicology, 2017, 30, 1673-1684.	1.7	39
36	TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice. Scientific Reports, 2017, 7, 7511.	1.6	21

3

#	Article	IF	Citations
37	A protease-activated receptor-1 antagonist protects against podocyte injury in a mouse model of nephropathy. Journal of Pharmacological Sciences, 2017, 135, 81-88.	1.1	22
38	Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases., 2017, 180, 113-128.		48
39	Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Progress in Biophysics and Molecular Biology, 2017, 130, 264-272.	1.4	53
40	Stimulation of Adenosine A2B Receptor Inhibits Endothelin-1-Induced Cardiac Fibroblast Proliferation and α-Smooth Muscle Actin Synthesis Through the cAMP/Epac/PI3K/Akt-Signaling Pathway. Frontiers in Pharmacology, 2017, 8, 428.	1.6	50
41	TRPC3 Channels in Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2017, 4, 56.	1.1	33
42	TRPC3-Nox2 complex mediates doxorubicin-induced myocardial atrophy. JCI Insight, 2017, 2, .	2.3	50
43	Redox signaling regulated by electrophiles and reactive sulfur species. Journal of Clinical Biochemistry and Nutrition, 2016, 58, 91-98.	0.6	41
44	Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells. Scientific Reports, 2016, 6, 28944.	1.6	46
45	TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Scientific Reports, 2016, 6, 39383.	1.6	60
46	Redox signaling regulated by an electrophilic cyclic nucleotide and reactive cysteine persulfides. Archives of Biochemistry and Biophysics, 2016, 595, 140-146.	1.4	18
47	Synthesis of radioiodinated probes to evaluate the biodistribution of a potent TRPC3 inhibitor. MedChemComm, 2016, 7, 1003-1006.	3.5	9
48	TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports, 2016, 6, 37001.	1.6	80
49	Purinergic P2Y ₆ receptors heterodimerize with angiotensin AT1 receptors to promote angiotensin Il–induced hypertension. Science Signaling, 2016, 9, ra7.	1.6	63
50	Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds. Molecular Pharmacology, 2016, 89, 348-363.	1.0	18
51	TRPC3 amplifies B-cell receptor-induced ERK signalling via protein kinase D-dependent Rap1 activation. Biochemical Journal, 2016, 473, 201-210.	1.7	6
52	Sustained \hat{I}^2 AR Stimulation Mediates Cardiac Insulin Resistance in a PKA-Dependent Manner. Molecular Endocrinology, 2016, 30, 118-132.	3.7	33
53	TRP Channels: Their Function and Potentiality as Drug Targets. , 2015, , 195-218.		13
54	Reactive Sulfur Species-Mediated Activation of the Keap1–Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress. Chemical Research in Toxicology, 2015, 28, 838-847.	1.7	24

#	Article	IF	Citations
55	Divergent Roles of CAAX Motif-signaled Posttranslational Modifications in the Regulation and Subcellular Localization of Ral GTPases. Journal of Biological Chemistry, 2015, 290, 22851-22861.	1.6	37
56	Inhibition of N-type Ca2+ channels ameliorates an imbalance in cardiac autonomic nerve activity and prevents lethal arrhythmias in mice with heart failure. Cardiovascular Research, 2014, 104, 183-193.	1.8	23
57	Role of 8-nitro-cGMP and its redox regulation in cardiovascular electrophilic signaling. Journal of Molecular and Cellular Cardiology, 2014, 73, 10-17.	0.9	13
58	Dual actions of ANP on endothelial permeability. BMC Pharmacology & Dual actions of ANP on endothelial permeability.	1.0	0
59	Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide - Biology and Chemistry, 2013, 34, 10-18.	1.2	55
60	Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochemical and Biophysical Research Communications, 2013, 434, 210-216.	1.0	13
61	Regulation of redox signalling by an electrophilic cyclic nucleotide. Journal of Biochemistry, 2013, 153, 131-138.	0.9	28
62	Atrial Natriuretic Peptide–Mediated Inhibition of Microcirculatory Endothelial Ca ²⁺ and Permeability Response to Histamine Involves cGMP-Dependent Protein Kinase I and TRPC6 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2121-2129.	1.1	39
63	GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nature Communications, 2013, 4, 1532.	5.8	51
64	\hat{l}^2 -arrestin2 in Infiltrated Macrophages Inhibits Excessive Inflammation after Myocardial Infarction. PLoS ONE, 2013, 8, e68351.	1.1	55
65	Redox Control of Cardiovascular Homeostasis by Angiotensin II. Current Pharmaceutical Design, 2013, 19, 3022-3032.	0.9	11
66	Induction of Cardiac Fibrosis by \hat{l}^2 -Blocker in G Protein-independent and G Protein-coupled Receptor Kinase $5\hat{l}^2$ -Arrestin2-dependent Signaling Pathways. Journal of Biological Chemistry, 2012, 287, 35669-35677.	1.6	52
67	Mammalian formin Fhod3 plays an essential role in cardiogenesis by organizing myofibrillogenesis. Biology Open, 2012, 1, 889-896.	0.6	58
68	Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nature Chemical Biology, 2012, 8, 714-724.	3.9	274
69	Recombinant mitochondrial transcription factor A protein inhibits nuclear factor of activated T cells signaling and attenuates pathological hypertrophy of cardiac myocytes. Mitochondrion, 2012, 12, 449-458.	1.6	29
70	Cilostazol Suppresses Angiotensin Il–Induced Vasoconstriction via Protein Kinase A–Mediated Phosphorylation of the Transient Receptor Potential Canonical 6 Channel. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2278-2286.	1.1	44
71	TRPC3-mediated Ca2+ influx contributes to Rac1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochemical and Biophysical Research Communications, 2011, 409, 108-113.	1.0	60
72	Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κB. Nitric Oxide - Biology and Chemistry, 2011, 25, 112-117.	1.2	24

#	Article	IF	CITATIONS
73	Mechanism of the Cardioprotective Effects of Docetaxel Pre-administration Against Adriamycin-Induced Cardiotoxicity. Journal of Pharmacological Sciences, 2011, 115, 336-345.	1.1	8
74	Dual Signaling Pathways of Arterial Constriction by Extracellular Uridine $5\hat{a} \in ^2$ -Triphosphate in the Rat. Journal of Pharmacological Sciences, 2011, 115, 293-308.	1.1	6
75	Roles of Heterotrimeric GTP-Binding Proteins in the Progression of Heart Failure. Journal of Pharmacological Sciences, 2011, 117, 1-5.	1.1	11
76	Heterologous down-regulation of angiotensin type 1 receptors by purinergic P2Y ₂ receptor stimulation through S-nitrosylation of NF-ÎB. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6662-6667.	3.3	42
77	Determining the Activation of Rho as an Index of Receptor Coupling to G12/13 Proteins. Methods in Molecular Biology, 2011, 746, 317-327.	0.4	0
78	Phosphorylation of TRPC6 Channels at Thr69 Is Required for Anti-hypertrophic Effects of Phosphodiesterase 5 Inhibition. Journal of Biological Chemistry, 2010, 285, 13244-13253.	1.6	88
79	Ca2+ influx and protein scaffolding via TRPC3 sustain PKC \hat{l}^2 and ERK activation in B cells. Journal of Cell Science, 2010, 123, 927-938.	1.2	60
80	Inhibition of TRPC6 Channel Activity Contributes to the Antihypertrophic Effects of Natriuretic Peptides-Guanylyl Cyclase-A Signaling in the Heart. Circulation Research, 2010, 106, 1849-1860.	2.0	143
81	Pertussis Toxin Up-regulates Angiotensin Type 1 Receptors through Toll-like Receptor 4-mediated Rac Activation. Journal of Biological Chemistry, 2010, 285, 15268-15277.	1.6	32
82	Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5400-5405.	3.3	344
83	Amphotericin B-Induced Renal Tubular Cell Injury Is Mediated by Na + Influx through Ion-Permeable Pores and Subsequent Activation of Mitogen-Activated Protein Kinases and Elevation of Intracellular Ca 2+ Concentration. Antimicrobial Agents and Chemotherapy, 2009, 53, 1420-1426.	1.4	42
84	Cardiac natriuretic peptides inhibit TRPC6-mediated prohypertrophic signaling through cGMP-PKG pathway. BMC Pharmacology, 2009, 9, .	0.4	0
85	Roles of TRP channels in the development of cardiac hypertrophy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 395-406.	1.4	56
86	P2Y6 receptor- $\hat{Gl}\pm 12/13$ signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO Journal, 2008, 27, 3104-3115.	3.5	169
87	A foodâ€derived synergist of NGF signaling: identification of protein tyrosine phosphatase 1B as a key regulator of NGF receptorâ€initiated signal transduction. Journal of Neurochemistry, 2008, 107, 1248-1260.	2.1	27
88	Keap1 Regulates the Constitutive Expression of GST A1 during Differentiation of Caco-2 Cells. Biochemistry, 2008, 47, 6169-6177.	1.2	18
89	$G\hat{l}\pm12/13$ -mediated Up-regulation of TRPC6 Negatively Regulates Endothelin-1-induced Cardiac Myofibroblast Formation and Collagen Synthesis through Nuclear Factor of Activated T Cells Activation*. Journal of Biological Chemistry, 2007, 282, 23117-23128.	1.6	126
90	Transient receptor potential channels in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 958-967.	1.8	99

#	Article	IF	CITATIONS
91	Heterotrimeric G Protein G \hat{l} ±13-Induced Induction of Cytokine mRNAs Through Two Distinct Pathways in Cardiac Fibroblasts. Journal of Pharmacological Sciences, 2006, 101, 144-150.	1.1	17
92	TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO Journal, 2006, 25, 5305-5316.	3.5	374
93	TRP Channels: Molecular Diversity and Physiological Function. Microcirculation, 2006, 13, 535-550.	1.0	46
94	Blocker-resistant presynaptic voltage-dependent Ca2+ channels underlying glutamate release in mice nucleus tractus solitarii. Brain Research, 2006, 1104, 103-113.	1.1	7
95	Clathrin Required for Phosphorylation and Internalization of Î ² 2-Adrenergic Receptor by G Protein-coupled Receptor Kinase 2 (GRK2). Journal of Biological Chemistry, 2006, 281, 31940-31949.	1.6	33
96	Transient Receptor Potential Channels in Cardiovascular Function and Disease. Circulation Research, 2006, 99, 119-131.	2.0	353
97	Clathrin Required for Phosphorylation and Internalization of Î ² 2-Adrenergic Receptor by G Protein-coupled Receptor Kinase 2 (GRK2). Journal of Biological Chemistry, 2006, 281, 31940-31949.	1.6	9
98	Caveolae-Independent Activation of Protein Kinase A in Rat Neonatal Myocytes. Journal of Pharmacological Sciences, 2005, 98, 168-174.	1.1	1
99	\hat{l}^2 -Arrestin2 enhances \hat{l}^2 2-adrenergic receptor-mediated nuclear translocation of ERK. Cellular Signalling, 2005, 17, 1248-1253.	1.7	39
100	Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes. Physiological Genomics, 2005, 22, 269-282.	1.0	91
101	Gα12/13- and Reactive Oxygen Species-dependent Activation of c-Jun NH2-terminal Kinase and p38 Mitogen-activated Protein Kinase by Angiotensin Receptor Stimulation in Rat Neonatal Cardiomyocytes. Journal of Biological Chemistry, 2005, 280, 18434-18441.	1.6	124
102	$\widehat{\text{Gl}\pm 12/13}$ -mediated Production of Reactive Oxygen Species Is Critical for Angiotensin Receptor-induced NFAT Activation in Cardiac Fibroblasts. Journal of Biological Chemistry, 2005, 280, 23041-23047.	1.6	83
103	Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nature Genetics, 2004, 36, 842-849.	9.4	329
104	Novel Real-Time Sensors to Quantitatively Assess In Vivo Inositol 1,4,5-Trisphosphate Production in Intact Cells. Chemistry and Biology, 2004, 11, 475-485.	6.2	28
105	Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Radical Biology and Medicine, 2003, 34, 1343-1352.	1.3	66
106	Amplification of receptor signalling by Ca2+ entry-mediated translocation and activation of PLCÂ2 in B lymphocytes. EMBO Journal, 2003, 22, 4677-4688.	3.5	101
107	Direct Interaction and Functional Coupling between Metabotropic Glutamate Receptor Subtype 1 and Voltage-sensitive Cav2.1 Ca2+ Channel. Journal of Biological Chemistry, 2003, 278, 25101-25108.	1.6	67
108	Differential Requirement of $Gl\pm 12$, $Gl\pm 13$, $Gl\pm q$, and Gl^2l^3 for Endothelin-1-Induced c-Jun NH2-Terminal Kinase and Extracellular Signal-Regulated Kinase Activation. Molecular Pharmacology, 2003, 63, 478-488.	1.0	72

#	ARTICLE	IF	CITATIONS
109	Activation Mechanism of Gi and Go by Reactive Oxygen Species. Journal of Biological Chemistry, 2002, 277, 9036-9042.	1.6	46
110	Transient Receptor Potential 1 Regulates Capacitative Ca2+ Entry and Ca2+ Release from Endoplasmic Reticulum in B Lymphocytes✪. Journal of Experimental Medicine, 2002, 195, 673-681.	4.2	193
111	Gα12/13Mediates α1-Adrenergic Receptor–Induced Cardiac Hypertrophy. Circulation Research, 2002, 91, 961-969.	2.0	100
112	$G^{\hat{1}^2\hat{1}^3}$ Counteracts $G\hat{1}\pm q$ Signaling upon $\hat{1}\pm 1$ -Adrenergic Receptor Stimulation. Biochemical and Biophysical Research Communications, 2002, 291, 995-1000.	1.0	8
113	LTRPC2 Ca2+-Permeable Channel Activated by Changes in Redox Status Confers Susceptibility to Cell Death. Molecular Cell, 2002, 9, 163-173.	4.5	746
114	Ca2+ Channel $\hat{l}\pm 1B$ Subunit (CaV 2.2) Knockout Mouse Reveals a Predominant Role of N-Type Channels in the Sympathetic Regulation of the Circulatory System. Trends in Cardiovascular Medicine, 2002, 12, 270-275.	2.3	34
115	Gαi and Gαo are target proteins of reactive oxygen species. Nature, 2000, 408, 492-495.	13.7	235
116	Activation of Rac1 Increases c-Jun NH2-Terminal Kinase Activity and DNA Fragmentation in a Calcium-Dependent Manner in Rat Myoblast Cell Line H9c2. Biochemical and Biophysical Research Communications, 1999, 262, 350-354.	1.0	17