
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634611/publications.pdf Version: 2024-02-01

ΠΜΛΟ ΚΗΛΝ

#	Article	IF	CITATIONS
1	Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011, 331, 568-571.	12.6	6,190
2	Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 2006, 44, 1624-1652.	10.3	3,611
3	Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 2014, 13, 624-630.	27.5	1,958
4	Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Advanced Materials, 2006, 18, 689-706.	21.0	1,504
5	Largeâ€5cale Exfoliation of Inorganic Layered Compounds in Aqueous Surfactant Solutions. Advanced Materials, 2011, 23, 3944-3948.	21.0	1,012
6	High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano, 2010, 4, 3155-3162.	14.6	911
7	Highâ€Concentration Solvent Exfoliation of Graphene. Small, 2010, 6, 864-871.	10.0	908
8	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	14.6	708
9	Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354, 1257-1260.	12.6	676
10	Preparation of High Concentration Dispersions of Exfoliated MoS ₂ with Increased Flake Size. Chemistry of Materials, 2012, 24, 2414-2421.	6.7	504
11	Graphene Dispersion and Exfoliation in Low Boiling Point Solvents. Journal of Physical Chemistry C, 2011, 115, 5422-5428.	3.1	440
12	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	14.6	394
13	Solvent-Exfoliated Graphene at Extremely High Concentration. Langmuir, 2011, 27, 9077-9082.	3.5	308
14	Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano, 2010, 4, 7064-7072.	14.6	290
15	Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation. Carbon, 2012, 50, 470-475.	10.3	272
16	Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon, 2010, 48, 4035-4041.	10.3	270
17	Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon, 2013, 52, 363-371.	10.3	232
18	Role of Solubility Parameters in Understanding the Steric Stabilization of Exfoliated Two-Dimensional Nanosheets by Adsorbed Polymers. Journal of Physical Chemistry C, 2012, 116, 11393-11400.	3.1	191

#	Article	IF	CITATIONS
19	Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale, 2013, 5, 581-587.	5.6	181
20	Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Materials and Design, 2016, 94, 87-94.	7.0	176
21	Approaching the theoretical limit for reinforcing polymers with graphene. Journal of Materials Chemistry, 2012, 22, 1278-1282.	6.7	161
22	Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS ₂ /Nanotube Composite Lithium Ion Battery Electrodes. ACS Nano, 2016, 10, 5980-5990.	14.6	159
23	Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon, 2014, 78, 243-249.	10.3	136
24	Numerical investigation for three dimensional squeezing flow of nanofluid in a rotating channel with lower stretching wall suspended by carbon nanotubes. Applied Thermal Engineering, 2017, 113, 1107-1117.	6.0	130
25	On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerospace Science and Technology, 2015, 46, 514-522.	4.8	128
26	Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Applied Materials & Interfaces, 2013, 5, 1423-1428.	8.0	112
27	Improvement of Transparent Conducting Nanotube Films by Addition of Small Quantities of Graphene. ACS Nano, 2010, 4, 4238-4246.	14.6	111
28	Thermoelectric behavior of organic thin film nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 119-123.	2.1	111
29	The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon, 2010, 48, 2825-2830.	10.3	103
30	Photoconductivity of solution-processed MoS2 films. Journal of Materials Chemistry C, 2013, 1, 6899.	5.5	99
31	Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Computing and Applications, 2017, 28, 37-46.	5.6	88
32	Enhancing the mechanical properties of BN nanosheet–polymer composites by uniaxial drawing. Nanoscale, 2014, 6, 4889.	5.6	85
33	Graphene, carbon nanotube and ionic liquid mixtures: towards new quasi-solid state electrolytes for dye sensitised solar cells. Journal of Materials Chemistry, 2011, 21, 16990.	6.7	82
34	Electroconductive Biohybrid Collagen/Pristine Graphene Composite Biomaterials with Enhanced Biological Activity. Advanced Materials, 2018, 30, e1706442.	21.0	81
35	Influence of hard segment content and nature on polyurethane/multiwalled carbon nanotube composites. Composites Science and Technology, 2011, 71, 1030-1038.	7.8	80
36	Magnetohydrodynamic Flow and Heat Transfer of Nanofluids in Stretchable Convergent/Divergent Channels. Applied Sciences (Switzerland), 2015, 5, 1639-1664.	2.5	80

Umar	KUAN
UNAR	N DAN

#	Article	IF	CITATIONS
37	Photoluminescence from Liquidâ€Exfoliated WS ₂ Monomers in Poly(Vinyl Alcohol) Polymer Composites. Advanced Functional Materials, 2016, 26, 1028-1039. A novel coupling of <mml:math <br="" altimg="si43.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mow><mml:mo< td=""><td>14.9</td><td>73</td></mml:mo<></mml:mow></mml:math>	14.9	73
38			

#	Article	IF	CITATIONS
55	MHD squeezing flow between two infinite plates. Ain Shams Engineering Journal, 2014, 5, 187-192.	6.1	48
56	Thermo-diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid. Propulsion and Power Research, 2014, 3, 151-158.	4.3	48
57	Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order. Results in Physics, 2017, 7, 4440-4450.	4.1	48
58	Surface coatings of silver nanowires lead to effective, high conductivity, high-strain, ultrathin sensors. Nanoscale, 2017, 9, 18507-18515.	5.6	48
59	Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheet saturated by a porous medium. Aerospace Science and Technology, 2016, 50, 196-203.	4.8	46
60	Selective Mechanical Reinforcement of Thermoplastic Polyurethane by Targeted Insertion of Functionalized SWCNTs. Journal of Physical Chemistry C, 2010, 114, 11401-11408.	3.1	45
61	On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates. AEJ - Alexandria Engineering Journal, 2014, 53, 463-468.	6.4	45
62	Analysis of magnetohydrodynamic flow and heat transfer of Cu–water nanofluid between parallel plates for different shapes of nanoparticles. Neural Computing and Applications, 2018, 29, 695-703.	5.6	44
63	Differential transform method for unsteady nanofluid flow and heat transfer. AEJ - Alexandria Engineering Journal, 2018, 57, 1867-1875.	6.4	43
64	High strength composite fibres from polyester filled with nanotubes and graphene. Journal of Materials Chemistry, 2012, 22, 12907.	6.7	42
65	Polymer Grafting to Singleâ€Walled Carbon Nanotubes: Effect of Chain Length on Solubility, Graft Density and Mechanical Properties of Macroscopic Structures. Small, 2013, 9, 552-560.	10.0	42
66	Heat and mass transfer analysis for MHD flow of nanofluid inconvergent/divergent channels with stretchable walls using Buongiorno's model. Neural Computing and Applications, 2017, 28, 4079-4092.	5.6	42
67	Heat transfer enhancement in hydromagnetic dissipative flow past a moving wedge suspended by 2-aluminum alloy nanoparticles in the presence of thermal radiation. International Journal of Hydrogen Energy, 2017, 42, 24634-24644.	7.1	42
68	Unsteady radiative flow of chemically reacting fluid over a convectively heated stretchable surface with cross-diffusion gradients. International Journal of Thermal Sciences, 2017, 121, 182-191.	4.9	41
69	Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology, 2012, 72, 235-242.	7.8	40
70	High stiffness nano-composite fibres from polyvinylalcohol filled with graphene and boron nitride. Carbon, 2016, 99, 280-288.	10.3	40
71	Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls. Results in Physics, 2017, 7, 361-372.	4.1	39
72	Influence of an effective Prandtl number model on squeezed flow of γAl 2 O 3 -H 2 O and γAl 2 O 3 -C 2 H 6 O 2 nanofluids. Journal of Molecular Liquids, 2017, 238, 447-454.	4.9	39

#	Article	IF	CITATIONS
73	Effects on magnetic field in squeezing flow of a Casson fluid between parallel plates. Journal of King Saud University - Science, 2017, 29, 119-125.	3.5	38
74	Extracting new solitary wave solutions of Benny–Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method. Optical and Quantum Electronics, 2017, 49, 1.	3.3	37
75	Flexible, transparent dielectric capacitors with nanostructured electrodes. Applied Physics Letters, 2012, 101, 103106.	3.3	36
76	Exact solutions of (3 + 1)-dimensional generalized KP equation arising in physics. Results in Physics, 2017, 7, 3901-3909.	4.1	36
77	A study of heat and mass transfer on magnetohydrodynamic (MHD) flow of nanoparticles. Propulsion and Power Research, 2018, 7, 72-77.	4.3	36
78	3D squeezed flow of γAl2O3–H2O and γAl2O3–C2H6O2 nanofluids: A numerical study. International Journal of Hydrogen Energy, 2017, 42, 24620-24633.	7.1	35
79	A Study of Velocity and Temperature Slip Effects on Flow of Water Based Nanofluids in Converging and Diverging Channels. International Journal of Applied and Computational Mathematics, 2015, 1, 569-587.	1.6	32
80	Tuning the Mechanical Properties of Composites from Elastomeric to Rigid Thermoplastic by Controlled Addition of Carbon Nanotubes. Small, 2011, 7, 1579-1586.	10.0	31
81	Thermal improvement in magnetized nanofluid for multiple shapes nanoparticles over radiative rotating disk. AEJ - Alexandria Engineering Journal, 2022, 61, 2318-2329.	6.4	31
82	Spherical Shaped (A g â^' F e 3 O 4 / H 2 O) Hybrid Nanofluid. Energies, 2019, 12, 76.	3.1	30
83	MHD FLOW OF AN INCOMPRESSIBLE FLUID THROUGH POROUS MEDIUM BETWEEN DILATING AND SQUEEZING PERMEABLE WALLS. Journal of Porous Media, 2014, 17, 861-867.	1.9	30
84	Soret and Dufour effects on flow in converging and diverging channels with chemical reaction. Aerospace Science and Technology, 2016, 49, 135-143.	4.8	29
85	Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents. Biomacromolecules, 2016, 17, 1845-1853.	5.4	29
86	Applications of Nanofluids for the Thermal Enhancement in Radiative and Dissipative Flow over a Wedge. Applied Sciences (Switzerland), 2019, 9, 1976.	2.5	29
87	Influence of nonlinear thermal radiation on the viscous flow through a deformable asymmetric porous channel: A numerical study. Journal of Molecular Liquids, 2017, 225, 167-173.	4.9	28
88	Nonlinear Thermal Radiation and Chemical Reaction Effects on a (Cuâ^'CuO)/NaAlg Hybrid Nanofluid Flow Past a Stretching Curved Surface. Processes, 2019, 7, 962.	2.8	28
89	Heat transfer analysis for squeezing flow of a Casson fluid between parallel plates. Ain Shams Engineering Journal, 2016, 7, 497-504.	6.1	26
90	Inverting Polyurethanes Synthesis: Effects on Nano/Micro-Structure and Mechanical Properties. Soft Materials, 2010, 9, 79-93.	1.7	25

#	Article	IF	CITATIONS
91	Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks. AEJ - Alexandria Engineering Journal, 2018, 57, 1893-1903.	6.4	25
92	Thermal Transport Investigation in Magneto-Radiative GO-MoS2/H2O-C2H6O2 Hybrid Nanofluid Subject to Cattaneo–Christov Model. Molecules, 2020, 25, 2592.	3.8	25
93	A bioconvection model for a squeezing flow of nanofluid between parallel plates in the presence of gyrotactic microorganisms. European Physical Journal Plus, 2017, 132, 1.	2.6	24
94	A New Modification in Simple Equation Method and its applications on nonlinear equations of physical nature. Results in Physics, 2017, 7, 4232-4240.	4.1	24
95	On Combined Effects of Heat Transfer and Chemical Reaction for the Flow through an Asymmetric Channel with Orthogonally Deformable Porous Walls. Mathematical Problems in Engineering, 2016, 2016, 1-10.	1.1	23
96	Influence of viscous dissipation and Joule heating on MHD bio-convection flow over a porous wedge in the presence of nanoparticles and gyrotactic microorganisms. SpringerPlus, 2016, 5, 2043.	1.2	23
97	A Novel Hybrid Model for Cu–Al2O3/H2O Nanofluid Flow and Heat Transfer in Convergent/Divergent Channels. Energies, 2020, 13, 1686.	3.1	23
98	Impacts of Freezing Temperature Based Thermal Conductivity on the Heat Transfer Gradient in Nanofluids: Applications for a Curved Riga Surface. Molecules, 2020, 25, 2152.	3.8	22
99	A BIOCONVECTION MODEL FOR MHD FLOW AND HEAT TRANSFER OVER A POROUS WEDGE CONTAINING BOTH NANOPARTICLES AND GYROTATIC MICROORGANISMS. Journal of Biological Systems, 2016, 24, 409-429.	1.4	21
100	Nonlinear radiation effects on flow of nanofluid over a porous wedge in the presence of magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 48-63.	2.8	21
101	Exact solutions for STO and (3+1)-dimensional Kdv-2K equations using <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mfenced)="" 0.784314="" 1="" 10="" etqq1="" open="(" overlock="" rgbt="" td="" tf<="" tj=""><td>5101337 T</td><td>d‡¢lose=")"</td></mml:mfenced></mml:mrow></mmi:math 	5101337 T	d‡¢lose=")"
102	Î ³ -Nanofluid Thermal Transport between Parallel Plates Suspended by Micro-Cantilever Sensor by Incorporating the Effective Prandtl Model: Applications to Biological and Medical Sciences. Molecules, 2020, 25, 1777.	3.8	21
103	A new modification in the exponential rational function method for nonlinear fractional differential equations. European Physical Journal Plus 2018, 133, 1 Modified heat transfer flow model for SWCNTs H <mmillimath< td=""><td>2.6</td><td>20</td></mmillimath<>	2.6	20
104	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e474" altimg="si48.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> O and MWCNTs-H <mml:math <="" display="inline" id="d1e482" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.6</td><td>20</td></mml:math>	2.6	20
105	altimg="si48.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow>Some new exact solitary wave solutions of the van der Waals model arising in nature. Results in Physics, 2018, 9, 648-655.</mml:mrow </mml:msub>	4.1	19
106	A theoretical investigation of unsteady thermally stratified flow of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi>Î³</mml:mi><mml:mi>A</mml:mi><mml:mi><mml:msub><mml:mi> </mml:mi><m xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif". Journal of Physics and Chemistry of Solids, 2018, 119, 296-308.</m </mml:msub></mml:mi></mml:mrow></mml:math 	າ ສໄທ ກາ>2	<b 19ml:mn>
107	Influence of viscous dissipation on a copper oxide nanofluid in an oblique channel: Implementation of the KKL model. European Physical Journal Plus, 2017, 132, 1.	2.6	18
108	Thermal radiation effects on flow of Jeffery fluid in converging and diverging stretchable channels. Neural Computing and Applications, 2018, 30, 2371-2379.	5.6	18

#	Article	IF	CITATIONS
109	An advanced version of a conformable mathematical model of Ebola virus disease in Africa. AEJ - Alexandria Engineering Journal, 2020, 59, 3261-3268.	6.4	18
110	Optimal solutions for homogeneous and non-homogeneous equations arising in physics. Results in Physics, 2017, 7, 216-224.	4.1	17
111	MHD flow of radiative micropolar nanofluid in a porous channel: optimal and numerical solutions. Neural Computing and Applications, 2018, 29, 793-801.	5.6	17
112	Effects of Viscous Dissipation and Convective Boundary Conditions on Blasius and Sakiadis Problems for Casson Fluid. The National Academy of Sciences, India, 2015, 38, 247-250.	1.3	16
113	Shape effects of nanoparticles on the squeezed flow between two Riga plates in the presence of thermal radiation. European Physical Journal Plus, 2017, 132, 1.	2.6	16
114	Highly Conductive Networks of Silver Nanosheets. Small, 2022, 18, e2105996.	10.0	16
115	A finite element investigation of the flow of a Newtonian fluid in dilating and squeezing porous channel under the influence of nonlinear thermal radiation. Neural Computing and Applications, 2018, 29, 501-508.	5.6	15
116	Optical Solutions of Schrödinger Equation Using Extended Sinh–Gordon Equation Expansion Method. Frontiers in Physics, 2020, 8, .	2.1	15
117	Thermal transport investigation in AA7072 and AA7075 aluminum alloys nanomaterials based radiative nanofluids by considering the multiple physical flow conditions. Scientific Reports, 2021, 11, 9837.	3.3	15
118	Impact of freezing temperature (Tfr) of Al2O3 and molecular diameter (H2O)d on thermal enhancement in magnetized and radiative nanofluid with mixed convection. Scientific Reports, 2022, 12, 703.	3.3	15
119	Reinforcement of metal with liquid-exfoliated inorganic nano-platelets. Applied Physics Letters, 2013, 103, 163106.	3.3	14
120	Influence of thermal and concentration gradients on unsteady flow over a stretchable surface. Results in Physics, 2017, 7, 3153-3162.	4.1	14
121	Heat transfer analysis and entropy generation in the nanofiuids composed by Aluminum and <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">î³<mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â^'</mml:mo></mml:mi </mml:mrow></mml:math> Aluminum oxides nanoparticles. Case	5.7	14
122	Studies in Thermal Engineering, 2022, 31, 101012. Irreversibility analysis for flow of nanofluids with aggregation in converging and diverging channel. Scientific Reports, 2022, 12, .	3.3	14
123	Numerical investigation of magnetohydrodynamic flow and heat transfer of copper–water nanofluid in a channel with non-parallel walls considering different shapes of nanoparticles. Advances in Mechanical Engineering, 2016, 8, 168781401663731.	1.6	13
124	A comparison of catabolic pathways induced in primary macrophages by pristine single walled carbon nanotubes and pristine graphene. RSC Advances, 2016, 6, 65299-65310.	3.6	13
125	Optimal solutions for the evolution of a social obesity epidemic model. European Physical Journal Plus, 2017, 132, 1.	2.6	13
126	MHD nanofluid flow through a deformable asymmetric porous channel. Engineering Computations, 2017, 34, 852-868.	1.4	13

#	Article	IF	CITATIONS
127	Exact solutions of perturbed nonlinear SchrĶdinger's equation with Kerr law nonlinearity by improved \$\${extbf{tan}} left({rac{{oldsymbol{phi}} left({oldsymbol{xi}}) Tj ETQq1 1 0.784314 rgBT /Overloc	ck 10.3f 50) 73ī⁄3Td (ight
128	Flow of carbon nanotubes suspended nanofluid in stretchable non-parallel walls. Neural Computing and Applications, 2018, 30, 2859-2871.	5.6	13
129	Auxiliary equation method for ill-posed Boussinesq equation. Physica Scripta, 2019, 94, 085213.	2.5	13
130	Heat Transfer Enhancement by Coupling of Carbon Nanotubes and SiO2 Nanofluids: A Numerical Approach. Processes, 2019, 7, 937.	2.8	13
131	Some exact solutions of the nonlinear space–time fractional differential equations. Waves in Random and Complex Media, 2019, 29, 645-664.	2.7	13
132	Graphene-MoS ₂ nanosheet composites as electrodes for dye sensitised solar cells. Materials Research Express, 2016, 3, 035007.	1.6	12
133	Flow of ferro-magnetic nanoparticles in a rotating system: a numerical investigation of particle shapes. Indian Journal of Physics, 2018, 92, 969-977.	1.8	12
134	Heat transfer intensification in hydromagnetic and radiative 3D unsteady flow regimes: A comparative theoretical investigation for aluminum and γ-aluminum oxides nanoparticles. Journal of Central South University, 2019, 26, 1233-1249.	3.0	12
135	the <mml:math <br="" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e2851" altimg="si262.gif"><mml:mi>î³</mml:mi><mml:msub><mml:mrow><mml:mi mathvariant="normal">AI</mml:mi </mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow>mathvariant="normal">O<mml:mrow><mml:mrox>3</mml:mrox></mml:mrow><td>ub>26mml: ub><td>msub><mmi :math>nanof</mmi </td></td></mml:msub></mml:math>	ub>26mml: ub> <td>msub><mmi :math>nanof</mmi </td>	msub> <mmi :math>nanof</mmi
136	flow inside a channel. Physica A: Statistical Mechanics and Its Applications, 2019, 526, 121083. Stimulations of Thermophysical Characteristics of Nano-Diamond and Silver Nanoparticles for Nonlinear Radiative Curved Surface Flow. IEEE Access, 2019, 7, 55509-55517.	4.2	12
137	Investigation of Thermal Transport in Multi-Shaped Cu Nanomaterial-Based Nanofluids. Materials, 2020, 13, 2737.	2.9	12
138	Heat transport mechanism in Cu/water and (Cu–Al2O3)/water under the influence of thermophysical characteristics and non-linear thermal radiation for Blasius/Sakiadis models: Numerical investigation. Journal of the Indian Chemical Society, 2022, 99, 100578.	2.8	12
139	Optimal variational iteration method for nonlinear problems. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24, 191-197.	1.0	11
140	Particle shape, thermal radiations, viscous dissipation and joule heating effects on flow of magneto-nanofluid in a rotating system. Engineering Computations, 2017, 34, 2479-2498.	1.4	11
141	Flow of a radioactive Casson fluid through a deformable asymmetric porous channel. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2115-2130.	2.8	11
142	Modified MHD Radiative Mixed Convective Nanofluid Flow Model with Consideration of the Impact of Freezing Temperature and Molecular Diameter. Symmetry, 2019, 11, 833.	2.2	11
143	Novel exact double periodic Soliton solutions to strain wave equation in micro structured solids. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 124077.	2.6	11
144	Surface thermal investigation in water functionalized Al2O3 and γAl2O3 nanomaterials-based nanofluid over a sensor surface. Applied Nanoscience (Switzerland), 2023, 13, 119-129.	3.1	11

#	Article	IF	CITATIONS
145	Radiative Colloidal Investigation for Thermal Transport by Incorporating the Impacts of Nanomaterial and Molecular Diameters (dNanoparticles, dFluid): Applications in Multiple Engineering Systems. Molecules, 2020, 25, 1896.	3.8	11
146	Stoke's First Problem for Carbon Nanotubes Suspended Nanofluid Flow Under the Effect of Slip Boundary Condition. Journal of Nanofluids, 2016, 5, 239-244.	2.7	11
147	Flow of magneto-nanofluid over a thermally stratified bi-directional stretching sheet in the presence of Ohmic heating. Engineering Computations, 2017, 34, 2499-2513.	1.4	10
148	An approach for approximate solution of fractional-order smoking model with relapse class. International Journal of Biomathematics, 2018, 11, 1850077.	2.9	10
149	Hidden phenomena of MHD on 3D squeezed flow of radiative-H2O suspended by aluminum alloys nanoparticles. European Physical Journal Plus, 2020, 135, 1.	2.6	10
150	A Novel Investigation and Hidden Effects of MHD and Thermal Radiations in Viscous Dissipative Nanofluid Flow Models. Frontiers in Physics, 2020, 8, .	2.1	10
151	Influence of Joule Heating and Viscous Dissipation on MHD Flow and Heat Transfer of Viscous Fluid in Converging/Diverging Stretchable Channels. Journal of Nanofluids, 2017, 6, 254-263.	2.7	10
152	Heat and mass transport investigation in radiative and chemically reacting fluid over a differentially heated surface and internal heating. Open Physics, 2020, 18, 842-852.	1.7	10
153	Comparative thermal transport mechanism in Cu-H ₂ O and Cu-Al ₂ O ₃ /H ₂ O nanofluids: numerical investigation. Waves in Random and Complex Media, 0, , 1-16.	2.7	10
154	Optimal solutions for a bio mathematical model for the evolution of smoking habit. Results in Physics, 2017, 7, 510-517.	4.1	9
155	A numerical study of thermo-diffusion, diffusion-thermo and chemical reaction effects on flow of a micropolar fluid in an asymmetric channel with dilating and contracting permeable walls. Engineering Computations, 2017, 34, 587-602.	1.4	9
156	Drag Reduction on a Square Cylinder using Multiple Detached Control Cylinders. KSCE Journal of Civil Engineering, 2018, 22, 2023-2034.	1.9	9
157	On Mixed Convection Squeezing Flow of Nanofluids. Energies, 2020, 13, 3138.	3.1	9
158	Thermal enhancement and entropy investigation in dissipative ZnO-SAE50 under thermal radiation: a computational paradigm. Waves in Random and Complex Media, 0, , 1-16.	2.7	9
159	Influence of the shape factor on the flow and heat transfer of a water-based nanofluid in a rotating system. European Physical Journal Plus, 2017, 132, 1.	2.6	8
160	Low cost, high performance ultrafiltration membranes from glass fiber-PTFE–graphene composites. Scientific Reports, 2020, 10, 21123.	3.3	8
161	Numerical Investigation of Heat and Mass Transport in the Flow over a Magnetized Wedge by Incorporating the Effects of Cross-Diffusion Gradients: Applications in Multiple Engineering Systems. Mathematical Problems in Engineering, 2020, 2020, 1-10.	1.1	8
162	Improved tan \$\$left({rac{{phi left(varvec{xi}ight)}}{2}} ight)\$\$ ï• î¾ 2 -expansion method for (2A+A1)-dimensional KP–BBM wave equation. Optical and Quantum Electronics, 2018, 50, 1.	3.3	7

#	Article	IF	CITATIONS
163	Some new solutions of the Caudrey–Dodd–Gibbon (CDG) equation using the conformable derivative. Advances in Difference Equations, 2019, 2019, .	3.5	7
164	Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 123962.	2.6	7
165	Heat transfer enhancement in H ₂ O suspended by aluminium alloy nanoparticles over a convective stretching surface. Advances in Mechanical Engineering, 2020, 12, 168781402094234.	1.6	7
166	Numerical study of heat transport mechanism in hybrid nanofluid [(Cu-Al ₂ O ₃)/water] over a stretching/shrinking porous wedge. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 635-644.	2.5	7
167	Optimal variational iteration method using Adomian's polynomials for physical problems on finite and semi-infinite intervals. European Physical Journal Plus, 2017, 132, 1.	2.6	6
168	Squeezing flow of MHD fluid between parallel disks. International Journal for Computational Methods in Engineering Science and Mechanics, 2018, 19, 42-47.	2.1	6
169	The Dynamics of H2O Suspended by Multiple Shaped Cu Nanoadditives in Rotating System. Journal of Nanomaterials, 2021, 2021, 1-11.	2.7	6
170	A conformable mathematical model for alcohol consumption in Spain. International Journal of Biomathematics, 2019, 12, 1950057.	2.9	5
171	Enhanced heat transfer in H2O inspired by Al2O3 and γAl2O3 nanomaterials and effective nanofluid models. Advances in Mechanical Engineering, 2021, 13, 168781402110236.	1.6	5
172	The Velocity Slip Boundary Condition Effects on Non-Newtonian Ferrofluid over a Stretching Sheet. Mathematical Problems in Engineering, 2022, 2022, 1-20.	1.1	5
173	MHD squeezing flow between two parallel disks with suction or injection via Legendre wavelet-quasilinearization technique. Engineering Computations, 2017, 34, 892-901.	1.4	4
174	Analytical approach to study a mathematical model of CD4+T-cells. International Journal of Biomathematics, 2018, 11, 1850056.	2.9	4
175	Variation of parameters method with an auxiliary parameter for initial value problems. Ain Shams Engineering Journal, 2018, 9, 1959-1963.	6.1	4
176	Solutions of fractional diffusion equations by variation of parameters method. Thermal Science, 2015, 19, 69-75.	1.1	4
177	Applied Mathematical Modelling and Heat Transport Investigation in Hybrid Nanofluids under the Impact of Thermal Radiation: Numerical Analysis. Mathematical Problems in Engineering, 2021, 2021, 1-10.	1.1	4
178	MHD Flow of a Viscous Fluid Between Dilating and Squeezing Porous Walls. Iranian Journal of Science and Technology, Transaction A: Science, 2017, 41, 951-956.	1.5	3
179	Thermal Transport in Nonlinear Unsteady Colloidal Model by Considering the Carbon Nanomaterials Length and Radius. Energies, 2020, 13, 2448.	3.1	3
180	Thermal performance in nanofluid and hybrid nanofluid under the influence of mixed convection and viscous dissipation: numerical investigation. Waves in Random and Complex Media, 0, , 1-19.	2.7	3

#	Article	IF	CITATIONS
181	Heat transfer investigation in Darcy–Forchheimer model by using nanoparticles. Waves in Random and Complex Media, 0, , 1-14.	2.7	3
182	The Modified Heat Flux Modeling in Nanoparticles (Fe3O4 and Aggregation Nanoparticle) Based Fluid between Two Rotating Disks. Energies, 2022, 15, 4088.	3.1	3
183	Aggregation effects on flow and heat transfer of nanofluids over curved stretching/shrinking surface with Lorentz forces. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 753-761.	2.5	3
184	Eyring-Powell fluid flow through a wall jet in the presence of viscous dissipation. European Physical Journal Plus, 2018, 133, 1.	2.6	2
185	Modified Chebyshev Wavelet-Picard Technique for Thin Film Flow of Non-Newtonian Fluid Down an Inclined Plane. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2019, 89, 533-538.	1.2	2
186	On stability of improved conformable model for studying the dynamics of a malnutrition community. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122664.	2.6	2
187	On mathematical model of HIVCD4+T-cells. AEJ - Alexandria Engineering Journal, 2021, 60, 995-1000.	6.4	2
188	The Numerical Investigation of the Heat Transport in the Nanofluids under the Impacts of Magnetic Field: Applications in Industrial Zone. Mathematical Problems in Engineering, 2021, 2021, 1-11.	1.1	2
189	Heat and Mass Transfer in Magneto-Newtonian Fluid Past a Paraboloid of Revolution with Internal Heat Source. Journal of Magnetics, 2020, 25, 254-261.	0.4	2
190	Analytical and Numerical Treatment of a Nano-Bioconvection Flow Model in the Presence of Nanoparticles and Gyrotactic Microorganisms. Journal of Nanofluids, 2018, 7, 755-765.	2.7	2
191	Impacts of various shaped Cu-nanomaterial on the heat transfer over a bilateral stretchable surface: Numerical investigation. Advances in Mechanical Engineering, 2021, 13, 168781402110674.	1.6	2
192	Numerical investigation of heat transfer in the nanofluids under the impact of length and radius of carbon nanotubes. Open Physics, 2022, 20, 416-430.	1.7	2
193	Stokes' first problem for MHD flow of Casson nanofluid. Multidiscipline Modeling in Materials and Structures, 2017, 13, 2-10.	1.3	1
194	Non-linear radiative squeezed flow in a rotating frame. Engineering Computations, 2017, 34, 2450-2462.	1.4	1
195	Coupling of optimal variation of parameters method with Adomian's polynomials for nonlinear equations representing fluid flow in different geometries. Neural Computing and Applications, 2018, 30, 3431-3444.	5.6	1
196	Thermo Diffusion and Diffusion Thermo Effects on Flow of Viscous Incompressible Fluid Between Convergent/Divergent Channels with Stretching/Shrinking Walls. Journal of Nanofluids, 2017, 6, 574-586.	2.7	1
197	Corrigendum to "Influence of thermal radiation and viscous dissipation on squeezed flow of water between Riga plates saturated with carbon nanotubes―[Colloids Surf. A Physicochem. Eng. Asp. 522, 389–398]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127596.	4.7	1
198	Zero Mass Flux Effects on Time Dependent Flow of an Eyring Powell with Activation Energy. Journal of Nanofluids, 2020, 9, 216-229.	2.7	1

#	Article	IF	CITATIONS
199	A Study of New Class of Star-Like Functions Associated by Symmetric p , q -Calculus. Journal of Mathematics, 2021, 2021, 1-8.	1.0	1
200	Intensification of thermal stratification on dissipative chemically heating fluid with cross-diffusion and magnetic field over a wedge. Open Physics, 2021, 19, 877-888.	1.7	1
201	Response to Comment on the paper "Heat transfer enhancement in hydromagnetic dissipative flow past a moving wedge suspended by H2O-aluminum alloy nanoparticles in the presence of thermal radiation, Umar Khan, Adnan, Naveed Ahmed, Syed Tauseef, Mohyud-Din―[Int J Hydrogen Energy 42 (2017) 24634–24644]. International lournal of Hydrogen Energy. 2018. 43. 6478-6479.	7.1	0
202	Heat Transfer Evaluation in MgZn6Zr/C8H18 [(Magnesium–Zinc–Zirconium)/Engine Oil] With Non-linear Solar Thermal Radiations and Modified Slip Boundaries Over a 3-Dimensional Convectively Heated Surface. Frontiers in Energy Research, 2022, 10, .	2.3	0