Sabina Di Matteo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634291/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Annals of Gastroenterology, 2017, 31, 42-55.	0.4	60
2	Neoplastic Transformation of the Peribiliary Stem Cell Niche in Cholangiocarcinoma Arisen in Primary Sclerosing Cholangitis. Hepatology, 2019, 69, 622-638.	3.6	45
3	Interleukin-15 and cancer: some solved and many unsolved questions. , 2020, 8, e001428.		44
4	Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology, 2020, 71, 972-989.	3.6	40
5	TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS ONE, 2017, 12, e0183932.	1.1	33
6	Hyaluronan coating improves liver engraftment of transplanted human biliary tree stem/progenitor cells. Stem Cell Research and Therapy, 2017, 8, 68.	2.4	32
7	Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clinical Proteomics, 2019, 16, 37.	1.1	31
8	Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Scientific Reports, 2019, 9, 5559.	1.6	30
9	The FXR agonist obeticholic acid inhibits the cancerogenic potential of human cholangiocarcinoma. PLoS ONE, 2019, 14, e0210077.	1.1	29
10	DCLK1, a Putative Stem Cell Marker in Human Cholangiocarcinoma. Hepatology, 2021, 73, 144-159.	3.6	29
11	Sensitivity of Human Intrahepatic Cholangiocarcinoma Subtypes to Chemotherapeutics and Molecular Targeted Agents: A Study on Primary Cell Cultures. PLoS ONE, 2015, 10, e0142124.	1.1	27
12	Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors. Scientific Reports, 2017, 7, 6080.	1.6	22
13	Intrahepatic cholangiocarcinoma: review and update. Hepatoma Research, 2018, 4, 20.	0.6	19
14	Metformin exerts anti-cancerogenic effects and reverses epithelial-to-mesenchymal transition trait in primary human intrahepatic cholangiocarcinoma cells. Scientific Reports, 2021, 11, 2557.	1.6	16
15	Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology, 2022, 76, 1617-1633.	3.6	15
16	CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2246-2256.	1.8	14
17	Identification of neuroblastoma cell lines with uncommon TAZ ⁺ /mesenchymal stromal cell phenotype with strong suppressive activity on natural killer cells. , 2021, 9, e001313.		14
18	Extracellular Signalâ€Regulated Kinase 5 Regulates the Malignant Phenotype of Cholangiocarcinoma Cells. Hepatology, 2021, 74, 2007-2020.	3.6	12

Sabina Di Matteo

#	Article	IF	CITATIONS
19	Pediatric Tumors-Mediated Inhibitory Effect on NK Cells: The Case of Neuroblastoma and Wilms' Tumors. Cancers, 2021, 13, 2374.	1.7	11
20	Hyaluronan-Based Grafting Strategies for Liver Stem Cell Therapy and Tracking Methods. Stem Cells International, 2019, 2019, 1-12.	1.2	9
21	Cholest-4,6-Dien-3-One Promote Epithelial-To-Mesenchymal Transition (EMT) in Biliary Tree Stem/Progenitor Cell Cultures In Vitro. Cells, 2019, 8, 1443.	1.8	6
22	Microgravity maintains stemness and enhance glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Digestive and Liver Disease, 2017, 49, e14.	0.4	1
23	Metformin reduces cell migration and down-regulates epithelial to mesenchymal transition by AMPK / Foxo3a pathway in human intrahepatic cholangiocarcinoma. Journal of Hepatology, 2017, 66, S636.	1.8	0
24	A new strategy to improve the liver engraftment efficiency of transplanted human biliary tree stem/progenitor cells (hBTSCs): Cell coating with hyaluronic acid. Digestive and Liver Disease, 2017, 49, e11.	0.4	0
25	Metformin reduces cell migration and down-regulates epithelial to mesenchymal transition (EMT) by AMPK/Foxo3a pathway in human intrahepatic cholangiocarcinoma (CCA). Digestive and Liver Disease, 2017, 49, e13.	0.4	0
26	OC.13.3: Metformin Inhibits Proliferation, Enhances Apoptosis and Down-Regulates Epithelial to Mesenchymal Transition (EMT) in Human Cholangiocarcinoma (CCA): A Study on Human Primary Cell Cultures. Digestive and Liver Disease, 2017, 49, e113.	0.4	0
27	P.10.2: Hyaluronic Acid Improves the Engraftment Efficiency of Human Biliary Tree Stem/Progenitor Cells (HBTSCS). Digestive and Liver Disease, 2017, 49, e195-e196.	0.4	0
28	P.10.4: The Differentiation and Metabolism of Human Hepatic and Biliary Tree Stem/Progenitor Cells can be Significantly Modulated by Microgravity. Digestive and Liver Disease, 2017, 49, e196-e197.	0.4	0
29	Simulated microgravity significantly impacts the differentiation and metabolism of human hepatic and biliary tree stem/progenitor cells. Journal of Hepatology, 2017, 66, S203.	1.8	0
30	Establishment of expanding 3D-organoids cultures from human fetal biliary tree stem cells (hBTSCs) as a potential tool for regenerative medicine and disease modeling. Digestive and Liver Disease, 2018, 50, 25.	0.4	0
31	Specific human cholangiocarcinoma (CCA) subpopulations of cancer stem cells (CSCs) express DoubleCortin-Like Kinase 1 (DCLK1) and DCLK1 inhibition induces anti-cancer effects. Digestive and Liver Disease, 2018, 50, 5-6.	0.4	0
32	The exposure of primary cultures of human biliary tree stem/progenitor cells (hBTSCs) to different micro-environmental factors induces proliferation, epithelial-mesenchymal transition (EMT) and senescence, which are typical pathological features of human cholangiopathies. Digestive and Liver Disease, 2018, 50, 30	0.4	0
33	Different micro-environtmental factors induce proliferation, epithelial-mesenchymal transition (EMT) and senescence of primary cultures of human biliary tree stem/progenitor cells (hBTSCs), recapitulating the pathological features typical of human cholangiopathies. Journal of Hepatology, 2018 68 S124-S125	1.8	0
34	The cancerogenic potential of primary human Cholangioracinoma cells is inhibited by Obeticholic Acid, a Farnesoid X Receptor (FXR) agonist. Digestive and Liver Disease, 2018, 50, 22-23.	0.4	0
35	P.04.6 PRIMARY HUMAN BILIARY TREE STEM/PROGENITOR CELLS (HBTSCS) EXPOSED TO MICROENVIRONMENTAL FACTORS SHOWED PROLIFERATION, EPITHELIAL-MESENCHYMAL TRANSITION (EMT) AND SENESCENCE, RECAPITULATING THE PATHOLOGICAL FEATURES TYPICAL OF HUMAN CHOLANGIOPATHIES. Digestive and liver Disease 2018 50 e157e158	0.4	0
36	OC.04.1 GENERATION OF 3D ORGANOIDS OF HUMAN FETAL BILIARY TREE STEM CELLS (HBTSCS) AS INNOVATIVE TOOL FOR THE REGENERATIVE MEDICINE OF LIVER AND PANCREAS. Digestive and Liver Disease, 2018, 50, e77.	0.4	0

#	Article	IF	CITATIONS
37	OC.08.2 THE FXR AGONIST, OBETICHOLIC ACID, INHIBITS THE CANCEROGENIC POTENTIAL OF PRIMARY HUMAN CHOLANGIOCARCINOMA CELLS: A STUDY ON PRIMARY HUMAN CELL CULTURES. Digestive and Liver Disease, 2018, 50, e87.	0.4	0
38	OC.08.1 DOUBLECORTIN-LIKE KINASE 1 (DCLK1) IS A MARKER OF SPECIFIC SUBPOPULATIONS OF CANCER STEM CELLS (CSCS) IN HUMAN CHOLANGIOCARCINOMA (CCA) AND ITS INHIBITION EXERTS ANTI-CANCER EFFECTS. Digestive and Liver Disease, 2018, 50, e86-e87.	0.4	0
39	Development of self-renewing 3D organoid culture from human fetal biliary tree stem cells (hBTSCs) as a potential system for regenerative medicine and disease modelling. Journal of Hepatology, 2018, 68, S55-S56.	1.8	0
40	PS-123-Biliary tree stem/progenitor cells mediate the regeneration in biliary lining after injury. Journal of Hepatology, 2019, 70, e76-e77.	1.8	0
41	OC.01.1 BILIARY TREE STEM CELLS PLAY A KEY ROLE IN THE REGENERATION OF BILIARY EPITHELIUM AFTER INJURY. Digestive and Liver Disease, 2019, 51, e77.	0.4	0
42	Regulation of the biology of cholangiocarcinoma (CCA) cells by Extracellular-signal-regulated kinase 5 (ERK5). Digestive and Liver Disease, 2020, 52, e51.	0.4	0
43	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	3.0	0