
Mariana Agostini de Moraes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634278/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of glyphosate herbicide from water using biopolymer membranes. Journal of Environmental Management, 2015, 151, 353-360.	7.8	104
2	Preparation and Characterization of Insoluble Silk Fibroin/Chitosan Blend Films. Polymers, 2010, 2, 719-727.	4.5	83
3	Development of silk fibroin/nanohydroxyapatite composite hydrogels for bone tissue engineering. European Polymer Journal, 2015, 67, 66-77.	5.4	82
4	Characterization of thin layer drying of Spirulina platensis utilizing perpendicular air flow. Bioresource Technology, 2009, 100, 1297-1303.	9.6	76
5	Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. Journal of Environmental Management, 2013, 131, 222-227.	7.8	64
6	Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydrate Polymers, 2019, 212, 59-66.	10.2	64
7	Moisture sorption properties of chitosan. LWT - Food Science and Technology, 2010, 43, 415-420.	5.2	59
8	Biocomposite membranes of sodium alginate and silk fibroin fibers for biomedical applications. Journal of Applied Polymer Science, 2013, 130, 3451-3457.	2.6	46
9	PHYCOCYANIN CONTENT OF <i>SPIRULINA PLATENSIS</i> DRIED IN SPOUTED BED AND THIN LAYER. Journal of Food Process Engineering, 2008, 31, 34-50.	2.9	42
10	Hydrogels from silk fibroin metastable solution: Formation and characterization from a biomaterial perspective. Materials Science and Engineering C, 2011, 31, 997-1001.	7.3	42
11	Effects of sterilization methods on the physical, chemical, and biological properties of silk fibroin membranes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 869-876.	3.4	41
12	Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing. International Journal of Biological Macromolecules, 2020, 152, 803-811.	7.5	40
13	Silk fibroin and sodium alginate blend: Miscibility and physical characteristics. Materials Science and Engineering C, 2014, 40, 85-91.	7.3	37
14	A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. International Journal of Biological Macromolecules, 2021, 178, 504-513.	7.5	37
15	Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic. International Journal of Food Science and Technology, 2008, 43, 1824-1831.	2.7	33
16	Use of Biopolymeric Membranes for Adsorption of Paraquat Herbicide from Water. Water, Air, and Soil Pollution, 2012, 223, 3093-3104.	2.4	32
17	Freezing influence on physical properties of glucomannan hydrogels. International Journal of Biological Macromolecules, 2019, 128, 401-405.	7.5	29
18	The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter, 2014, 4, e28536.	2.6	28

#	Article	IF	CITATIONS
19	Formation of silk fibroin hydrogel and evaluation of its drug release profile. Journal of Applied Polymer Science, 2015, 132, .	2.6	28
20	Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering. Macromolecular Bioscience, 2012, 12, 1253-1264.	4.1	25
21	Treatment of chitin effluents by coagulation–flocculation with chitin and aluminum sulfate. Journal of Environmental Chemical Engineering, 2013, 1, 50-55.	6.7	24
22	Clycerin and ethanol as additives on silk fibroin films: Insoluble and malleable films. Journal of Applied Polymer Science, 2013, 128, 115-122.	2.6	23
23	Phase Behaviour and Miscibility Studies of Collagen/Silk Fibroin Macromolecular System in Dilute Solutions and Solid State. Molecules, 2017, 22, 1368.	3.8	21
24	Glucomannan asymmetric membranes for wound dressing. Journal of Materials Research, 2019, 34, 481-489.	2.6	20
25	Factors Controlling the Deposition of Silk Fibroin Nanofibrils during Layer-by-Layer Assembly. Biomacromolecules, 2015, 16, 97-104.	5.4	19
26	Production and characterization of fibroin hydrogel using waste silk fibers. Fibers and Polymers, 2017, 18, 57-63.	2.1	19
27	Multilayer biopolymer membranes containing copper for antibacterial applications. Journal of Applied Polymer Science, 2012, 126, E17.	2.6	17
28	Effect of Chitosan and Aloe Vera Extract Concentrations on the Physicochemical Properties of Chitosan Biofilms. Polymers, 2021, 13, 1187.	4.5	16
29	Moisture sorption characteristics of microalgae Spirulina platensis. Brazilian Journal of Chemical Engineering, 2009, 26, 189-197.	1.3	14
30	Phase Diagram and Estimation of Flory-Huggins Parameter of Interaction of Silk Fibroin/Sodium Alginate Blends. Frontiers in Bioengineering and Biotechnology, 2020, 8, 973.	4.1	13
31	Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers, 2022, 14, 2361.	4.5	9
32	Silk fibroin membranes with selfâ€assembled globular structures for controlled drug release. Journal of Applied Polymer Science, 2020, 137, 48763.	2.6	8
33	Study of phase separation in blends of silk fibroin and sodium alginate in solution and in solid state. Journal of Polymer Research, 2018, 25, 1.	2.4	6
34	Chitosan-based nanocomposites for drug delivery. , 2018, , 1-26.		5
35	Evaluation of diclofenac sodium incorporation in alginate membranes as potential drug release system. Materialia, 2020, 12, 100827.	2.7	4
36	Silk Fibroin: A Promising Biomaterial. Advanced Materials Research, 2011, 409, 99-104.	0.3	3

#	Article	IF	CITATIONS
37	Assessing the influence of silkworm cocoon's age on the physicochemical properties of silk fibroin-based materials. Journal of Materials Research, 2019, 34, 1944-1949.	2.6	3
38	Assessing the Influence of Dyes Physico-Chemical Properties on Incorporation and Release Kinetics in Silk Fibroin Matrices. Polymers, 2021, 13, 798.	4.5	3
39	Safety and structural integrity of N95/PFF2 respirators decontamination. American Journal of Infection Control, 2021, 49, 1221-1226.	2.3	1
40	Collagen-Silk Fibroin Fibers: A Promising Scaffold for Vascular Tissue Engineering. Materials Science Forum, 0, 706-709, 572-577.	0.3	0
41	Combinatorial effect of pH and ionic strength in the release of charged dyes from silk fibroin membranes. MRS Communications, 0, , .	1.8	0