Eyal Grunebaum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634255/publications.pdf

Version: 2024-02-01

83 papers

2,828 citations

28 h-index 51 g-index

84 all docs 84 docs citations

times ranked

84

3601 citing authors

#	Article	IF	Citations
1	Elevated Cow's Milk–Specific IgE Levels Prior to Oral Immunotherapy Decrease the Likelihood of Reaching the Maintenance Dose. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 215-221.e2.	3.8	10
2	Monitoring patients with uncomplicated common variable immunodeficiency: a systematic review. Allergy, Asthma and Clinical Immunology, 2022, 18, 21.	2.0	5
3	Plateletâ€activating factor acetylhydrolase is a biomarker of severe anaphylaxis in children. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2665-2676.	5.7	12
4	A Sherlock Approach to a Kindred with a Variable Immuno-Hematologic Phenotype. Journal of Allergy and Clinical Immunology: in Practice, 2022, , .	3.8	1
5	Purine nucleoside phosphorylase deficiency induces p53-mediated intrinsic apoptosis in human induced pluripotent stem cell-derived neurons. Scientific Reports, 2022, 12, .	3.3	3
6	Successful desensitization protocol for a patient with fludarabine anaphylaxis during hematopoietic transplantation. Pediatric Allergy and Immunology, 2022, 33, .	2.6	1
7	Progressive decline of T and B cell numbers and function in a patient with CDC42 deficiency. Immunologic Research, 2021, 69, 53-58.	2.9	5
8	An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Frontiers in Neurology, 2021, 12, 612817.	2.4	5
9	Short dosing intervals during oral challenge increase the risk of severe adverse reactions in children with milk allergy. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3829-3832.e1.	3.8	1
10	SARS-CoV-2â€"Reactive Mucosal B Cells in the Upper Respiratory Tract of Uninfected Individuals. Journal of Immunology, 2021, 207, 2581-2588.	0.8	5
11	The Use of Induced Pluripotent Stem Cells to Study the Effects of Adenosine Deaminase Deficiency on Human Neutrophil Development. Frontiers in Immunology, 2021, 12, 748519.	4.8	7
12	Homozygous duplication identified by whole genome sequencing causes LRBA deficiency. Npj Genomic Medicine, 2021, 6, 96.	3.8	3
13	Morbidity in an adenosine deaminase-deficient patient during 27Âyears of enzyme replacement therapy. Clinical Immunology, 2020, 211, 108321.	3.2	11
14	A Nonsense N –Terminus NFKB2 Mutation Leading to Haploinsufficiency in a Patient with a Predominantly Antibody Deficiency. Journal of Clinical Immunology, 2020, 40, 1093-1101.	3.8	7
15	Conversion from tacrolimus to sirolimus as a treatment modality in de novo allergies and immuneâ€mediated disorders in pediatric liver transplant recipients. Pediatric Transplantation, 2020, 24, e13737.	1.0	5
16	FCRL4 Is an Fc Receptor for Systemic IgA, but Not Mucosal Secretory IgA. Journal of Immunology, 2020, 205, 533-538.	0.8	15
17	Partial Purine Nucleoside Phosphorylase Deficiency Helps Determine Minimal Activity Required for Immune and Neurological Development. Frontiers in Immunology, 2020, 11, 1257.	4.8	10
18	Comparison of elapegademase and pegademase in ADA-deficient patients and mice. Clinical and Experimental Immunology, 2020, 200, 176-184.	2.6	19

#	Article	IF	Citations
19	Detection of Human CD38 Using Variable Lymphocyte Receptor (VLR) Tetramers. Cells, 2020, 9, 950.	4.1	2
20	Neutropenia among patients with adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, $2019,143,403-405.$	2.9	24
21	Early Enzyme Replacement Therapy Improves Hearing and Immune Defects in Adenosine Deaminase Deficient-Mice. Frontiers in Immunology, 2019, 10, 416.	4.8	11
22	Liver-associated immune abnormalities. Autoimmunity Reviews, 2019, 18, 15-20.	5.8	13
23	Consensus approach for the management of severe combined immune deficiency caused by adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 852-863.	2.9	104
24	NK cell defects in X-linked pigmentary reticulate disorder. JCI Insight, 2019, 4, .	5.0	17
25	De Novo Allergy and Immune-Mediated Disorders Following Solid-Organ Transplantation—Prevalence, Natural History, and Risk Factors. Journal of Pediatrics, 2018, 196, 154-160.e2.	1.8	43
26	Long-term immune reconstitution after matched unrelated hematopoietic stem cell transplantation for immunodeficiency. Journal of Allergy and Clinical Immunology, 2018, 141, 1154-1157.e3.	2.9	0
27	Adenosine deaminase deficiency: current treatments and emerging therapeutics. Expert Opinion on Orphan Drugs, 2018, 6, 117-125.	0.8	0
28	Antibodies Encoded by FCRL4-Bearing Memory B Cells Preferentially Recognize Commensal Microbial Antigens. Journal of Immunology, 2018, 200, 3962-3969.	0.8	14
29	Outcome of hematopoietic cell transplantation for DNA double-strand break repair disorders. Journal of Allergy and Clinical Immunology, 2018, 141, 322-328.e10.	2.9	79
30	A tyrosine sulfation–dependent HLA-I modification identifies memory B cells and plasma cells. Science Advances, 2018, 4, eaar7653.	10.3	13
31	Immunosuppression for immunodeficiency: Getting smarter. Journal of Allergy and Clinical Immunology, 2018, 142, 1762-1764.e1.	2.9	0
32	Intracellular Delivery of Human Purine Nucleoside Phosphorylase by Engineered Diphtheria Toxin Rescues Function in Target Cells. Molecular Pharmaceutics, 2018, 15, 5217-5226.	4.6	16
33	Hematological Malignancies Associated With Primary Immunodeficiency Disorders. Clinical Immunology, 2018, 194, 46-59.	3.2	17
34	Use of induced pluripotent stem cells to investigate the effects of purine nucleoside phosphorylase deficiency on neuronal development. LymphoSign Journal, 2018, 5, 49-56.	0.2	3
35	Gene therapy for primary immune deficiencies: a Canadian perspective. Allergy, Asthma and Clinical Immunology, 2017, 13, 14.	2.0	9
36	Hematopoietic stem cell transplantation for RelB deficiency. Journal of Allergy and Clinical Immunology, 2017, 140, 1199-1201.e3.	2.9	9

#	Article	IF	Citations
37	Long-Term Outcome of Adenosine Deaminase-Deficient Patientsâ€"a Single-Center Experience. Journal of Clinical Immunology, 2017, 37, 582-591.	3.8	26
38	Long-term outcomes of 176 patients with X-linked hyper-IgM syndrome treated with or without hematopoietic cell transplantation. Journal of Allergy and Clinical Immunology, 2017, 139, 1282-1292.	2.9	107
39	Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016, 128, 45-54.	1.4	173
40	Bone marrow transplantation for monoallelic signal transducer and activator of transcription 1 deficiency. Journal of Allergy and Clinical Immunology, 2016, 138, 612-615.e1.	2.9	10
41	DNA polymerase- $\hat{l}\pm$ regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nature Immunology, 2016, 17, 495-504.	14.5	123
42	Alveolar-like Stem Cell–derived <i>Myb</i> ^{<i>â^'</i>} Macrophages Promote Recovery and Survival in Airway Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1219-1229.	5.6	34
43	Performance of Busulfan Dosing Guidelines for Pediatric Hematopoietic Stem Cell Transplant Conditioning. Biology of Blood and Marrow Transplantation, 2015, 21, 1471-1478.	2.0	39
44	IPEX syndrome caused by a novel mutation in FOXP3 gene can be cured by bone marrow transplantation from an unrelated donor after myeloablative conditioning. LymphoSign Journal, 2015, 2, 31-38.	0.2	3
45	Atypical hemolytic-uremic syndrome in a patient with adenosine deaminase deficiency. LymphoSign Journal, 2015, 2, 195-199.	0.2	5
46	Pulmonary alveolar proteinosis in adenosine deaminase–deficient mice. Journal of Allergy and Clinical Immunology, 2014, 133, 1467-1471.e4.	2.9	12
47	Hemophagocytic lymphohistiocytosis and primary immune deficiency disorders. Clinical Immunology, 2014, 155, 118-125.	3.2	42
48	A mutation in the <i>STAT1</i> DNA-binding domain associated with hemophagocytic lymphohistocytosis. LymphoSign Journal, 2014, 1, 87-95.	0.2	14
49	Characteristic scapular and rib changes on chest radiographs of children with ADA-deficiency SCIDS in the first year of life. Pediatric Radiology, 2013, 43, 589-592.	2.0	39
50	Purine nucleoside phosphorylase deficiency presenting as severe combined immune deficiency. Immunologic Research, 2013, 56, 150-154.	2.9	35
51	Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Current Opinion in Allergy and Clinical Immunology, 2013, 13, 630-638.	2.3	87
52	Multiple osteochondromas following irradiationâ€containing conditioning in severe combined immunodeficiency. British Journal of Haematology, 2013, 161, 446-448.	2.5	4
53	Primary T-cell immunodeficiencies. , 2013, , 437-453.		1
54	Outcome of hematopoietic stem cell transplantation for adenosine deaminase–deficient severe combined immunodeficiency. Blood, 2012, 120, 3615-3624.	1.4	151

#	Article	IF	Citations
55	Defining combined immunodeficiency. Journal of Allergy and Clinical Immunology, 2012, 130, 177-183.	2.9	104
56	Pulmonary alveolar proteinosis in patients with adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2012, 129, 1588-1593.	2.9	74
57	Cerebellar abnormalities in purine nucleoside phosphorylase deficient mice. Neurobiology of Disease, 2012, 47, 201-209.	4.4	25
58	Diffuse large B-cell lymphoma as presenting feature of Zap-70 deficiency. Journal of Allergy and Clinical Immunology, 2011, 127, 517-520.	2.9	39
59	Purine metabolism, immune reconstitution, and abdominal adipose tumor after gene therapy for adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2011, 127, 1417-1419.e3.	2.9	13
60	Effects of purine nucleoside phosphorylase deficiency on thymocyte development. Journal of Allergy and Clinical Immunology, 2011, 128, 854-863.e1.	2.9	27
61	Bone Marrow Transplantation Using HLA-Matched Unrelated Donors for Patients Suffering from Severe Combined Immunodeficiency. Hematology/Oncology Clinics of North America, 2011, 25, 63-73.	2.2	4
62	Bone Marrow Transplantation Using HLA-Matched Unrelated Donors for Patients Suffering from Severe Combined Immunodeficiency. Immunology and Allergy Clinics of North America, 2010, 30, 63-73.	1.9	6
63	EdU incorporation is an alternative non-radioactive assay to [3H]thymidine uptake for in vitro measurement of mice T-cell proliferations. Journal of Immunological Methods, 2009, 350, 29-35.	1.4	95
64	Polyethylene glycol–modified adenosine deaminase improved lung disease but not liverÂdisease in partial adenosine deaminase deficiency. Journal of Allergy and Clinical Immunology, 2009, 124, 848-850.	2.9	21
65	ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency. Blood, 2009, 114, 3216-3226.	1.4	82
66	Lentivirus gene therapy for purine nucleoside phosphorylase deficiency. Journal of Gene Medicine, 2008, 10, 1282-1293.	2.8	19
67	Adenosine deaminase deficiency can present with features of Omenn syndrome. Journal of Allergy and Clinical Immunology, 2008, 121, 1056-1058.	2.9	52
68	High-dose methylprednisolone is effective in the management of acute graft-versus-host disease in severe combined immune deficiency. Journal of Allergy and Clinical Immunology, 2008, 122, 1215-1216.	2.9	9
69	Omenn syndrome is associated with mutations in DNA ligase IV. Journal of Allergy and Clinical Immunology, 2008, 122, 1219-1220.	2.9	102
70	Neurologic Abnormalities in Patients with Adenosine Deaminase Deficiency. Pediatric Neurology, 2007, 37, 218-221.	2.1	41
71	Burkitt's Lymphoma in a Patient with Adenosine Deaminase Deficiency-Severe Combined Immunodeficiency Treated with Polyethylene Glycol-Adenosine Deaminase. Journal of Pediatrics, 2007, 151, 93-95.	1.8	32
72	Rituximab for congenital haemophiliacs with inhibitors: a Canadian experience. Haemophilia, 2006, 12, 7-18.	2.1	101

#	Article	IF	CITATIONS
73	Human T Cell Immunodeficiency: When Signal Transduction Goes Wrong. Immunologic Research, 2006, 35, 117-126.	2.9	14
74	Intracellular delivery of purine nucleoside phosphorylase (PNP) fused to protein transduction domain corrects PNP deficiency in vitro. Cellular Immunology, 2006, 240, 107-115.	3.0	27
7 5	Bone Marrow Transplantation for Severe Combined Immune Deficiency. JAMA - Journal of the American Medical Association, 2006, 295, 508.	7.4	216
76	TAT-mediated intracellular delivery of purine nucleoside phosphorylase corrects its deficiency in mice. Journal of Clinical Investigation, 2006, 116, 2717-2726.	8.2	66
77	Novel Mutations and Hot‧pots in Patients with Purine Nucleoside Phosphorylase Deficiency. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1411-1415.	1.1	30
78	The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Human Reproduction, 2003, 18, 1094-1099.	0.9	83
79	The role of anti-endothelial cell antibodies in Kawasaki disease -in vitro and in vivo studies. Clinical and Experimental Immunology, 2002, 130, 233-240.	2.6	64
80	Gene abnormalities in patients with hemophagocytic lymphohistiocytosis. Israel Medical Association Journal, 2002, 4, 366-9.	0.1	8
81	Two novel mutations in a purine nucleoside phosphorylase (PNP)â€deficient patient. Clinical Genetics, 2001, 59, 430-437.	2.0	42
82	Signal-Transduction Defects in T cells. Clinical Reviews in Allergy and Immunology, 2001, 20, 27-42.	6.5	1
83	Haemophagocytic lymphohistiocytosis in X-linked severe combined immunodeficiency. British Journal of Haematology, 2000, 108, 834-837.	2.5	27