Raghuram Gujjarappa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634113/publications.pdf Version: 2024-02-01

		687220	794469
32	410	13	19
papers	citations	h-index	g-index
32 all docs	32 docs citations	32 times ranked	314 citing authors

#	Article	IF	CITATIONS
1	Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Advanced Synthesis and Catalysis, 2020, 362, 4896-4990.	2.1	61
2	Recent Advances in Pyridineâ€Based Organocatalysis and its Application towards Valuable Chemical Transformations. ChemistrySelect, 2020, 5, 8745-8758.	0.7	28
3	Copper atalyzed Siteâ€Selective Oxidative Câ^'C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Advanced Synthesis and Catalysis, 2019, 361, 135-145.	2.1	26
4	Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles. Tetrahedron Letters, 2019, 60, 223-229.	0.7	25
5	Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European Journal of Organic Chemistry, 2018, 2018, 4628-4638.	1.2	23
6	Pd-Catalyzed Decarboxylation and Dual C(sp ³)–H Functionalization Protocols for the Synthesis of 2,4-Diarylpyridines. Journal of Organic Chemistry, 2019, 84, 5005-5020.	1.7	21
7	Reagent-Controlled Divergent Synthesis of 2-Amino-1,3-Benzoxazines and 2-Amino-1,3-Benzothiazines. Journal of Organic Chemistry, 2020, 85, 380-396.	1.7	20
8	Overview on Recent Approaches towards Synthesis of 2â€Ketoâ€annulated Oxazole Derivatives. Journal of Heterocyclic Chemistry, 2019, 56, 2730-2743.	1.4	18
9	Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C–N Source. European Journal of Organic Chemistry, 2020, 2020, 803-814.	1.2	18
10	Transition-metal-free variant of Glaser- and Cadiot-Chodkiewicz-type Coupling: Benign access to diverse 1,3-diynes and related molecules. Tetrahedron Letters, 2020, 61, 151775.	0.7	17
11	The facile and efficient organocatalytic platform for accessing 1,2,4-selenadiazoles and thiadiazoles under aerobic conditions. Tetrahedron Letters, 2018, 59, 904-908.	0.7	16
12	HFIP-mediated strategy towards β-oxo amides and subsequent Friedel-Craft type cyclization to 2‑quinolinones using recyclable catalyst. Tetrahedron Letters, 2020, 61, 152535.	0.7	16
13	Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Letters, 2020, 61, 151588.	0.7	13
14	An organocatalytic C–C bond cleavage approach: a metal-free and peroxide-free facile method for the synthesis of amide derivatives. New Journal of Chemistry, 2020, 44, 20940-20944.	1.4	11
15	A metal- and base-free domino protocol for the synthesis of 1,3-benzoselenazines, 1,3-benzothiazines and related scaffolds. Organic and Biomolecular Chemistry, 2019, 17, 2516-2528.	1.5	10
16	Copper atalyzed [2+2+1+1] Annulation for the Regioselective Synthesis of 2,6â€Diarylpyridines <i>via</i> C1â€Insertion and Subsequent Cyclization. ChemistrySelect, 2020, 5, 10144-10148.	0.7	10
17	Transition-Metal-Free Transfer Hydrogenative Cascade Reaction of Nitroarenes with Amines/Alcohols: Redox-Economical Access to Benzimidazoles. Journal of Organic Chemistry, 2021, 86, 14597-14607.	1.7	10
18	Decarboxylative cyclization of amino acids towards the Regioselective synthesis of 2,4-diarylpyridines via relay Fe(III)/In(III)-catalysis. Tetrahedron Letters, 2020, 61, 151495.	0.7	9

RAGHURAM GUJJARAPPA

#	Article	IF	CITATIONS
19	Facile Protocols towards C2-Arylated Benzoxazoles using Fe(III)-Catalyzed C(sp 2-H) Functionalization and Metal-Free Domino Approach. Synlett, 2018, 29, 1469-1478.	1.0	7
20	A Facile Câ€H Insertion Strategy using Combination of HFIP and Isocyanides: Metalâ€Free Access to Azole Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 1793-1797.	1.3	7
21	Mo(VI)-catalyzed Synthesis of 2-Aryl-2 <i>H</i> -indazoles Using Pinacol Mediated Deoxygenation of Nitroaromatics. Chemistry Letters, 2019, 48, 1258-1261.	0.7	6
22	Aminoâ€Acidâ€Mediated Aerobic Oxidation of Organoborons for the Synthesis of Phenolic Derivatives Using Single Electron Transfer. ChemistrySelect, 2020, 5, 2419-2423.	0.7	6
23	P(III)â€Mediated Cascade Câ€N/Câ€S Bond Formation: A Protocol towards the Synthesis of <i>N</i> , <i>S</i> â€Heterocycles and Spiro Compounds. Advanced Synthesis and Catalysis, 2021, 363, 431-445.	2.1	6
24	Recent Advances in Synthesis and Medicinal Evaluation of 1,2â€Benzothiazine Analogues. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
25	Efficient Syntheses of Diverse N-Heterocycles: The Molybdenum(VI)-Catalyzed Reductive Cyclization of Nitroarenes using Pinacol as a DeoxygenatingÂ-Agent. SynOpen, 2018, 02, 0138-0144.	0.8	4
26	C _{sp} –C _{sp} bond cleavage and fragment coupling: a transition metal-free "extrusion and recombination―approach towards synthesis of 1,2-diketones. Organic Chemistry Frontiers, 2021, 8, 5389-5396.	2.3	4
27	<scp>Azaâ€Michael</scp> addition of 1, <scp>2â€diazoles</scp> to structurally diverse enones: Efficient methods toward <scp>βâ€amino</scp> ketones. Journal of Heterocyclic Chemistry, 2021, 58, 1029-1033.	1.4	4
28	Overview of Hydroxychloroquine and Remdesivir on severe acute respiratory syndrome coronavirus 2 (SARS oVâ€2). Journal of Heterocyclic Chemistry, 2023, 60, 165-182.	1.4	4
29	Organocatalytic Decarboxylation and Dual C(sp ³)â^'H Bond Functionalization Toward Facile Access to Divergent 2,6â€Điarylpyridines. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
30	Synthesis of Pyrazolo[4,3-c]quinolines and the C-C Bond Cleavage during Reductive Cyclization. Heterocycles, 2021, 102, 705.	0.4	1
31	Goldâ€Catalyzed Facile Protocol towards the Efficient Access of Azetidinyl Esters, βâ€Amino Esters and Î′â€Amino Esters using Simple Substrates. Asian Journal of Organic Chemistry, 2019, 8, 1947-1947. 	1.3	Ο
32	Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. Heterocycles, 2021, 102, 465.	0.4	0