Vishwanath venketaraman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3634010/publications.pdf

Version: 2024-02-01

82 papers

2,770 citations

172457 29 h-index 197818 49 g-index

85 all docs 85 docs citations

85 times ranked 3258 citing authors

#	Article	IF	CITATIONS
1	Cytolytic P2X purinoceptors. Cell Death and Differentiation, 1998, 5, 191-199.	11.2	243
2	Analysis of the Delta Variant B.1.617.2 COVID-19. Clinics and Practice, 2021, 11, 778-784.	1.4	198
3	Glutathione and infection. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3329-3349.	2.4	130
4	General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. Journal of Clinical Medicine, 2020, 9, 2541.	2.4	119
5	Glutathione as a Marker for Human Disease. Advances in Clinical Chemistry, 2018, 87, 141-159.	3.7	115
6	Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis. Journal of Clinical Medicine, 2019, 8, 2219.	2.4	93
7	Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Frontiers in Immunology, 2015, 6, 508.	4.8	87
8	Glutathione and Nitrosoglutathione in Macrophage Defense against Mycobacterium tuberculosis. Infection and Immunity, 2005, 73, 1886-1889.	2.2	86
9	Preparation of liposomal vancomycin and intracellular killing of meticillin-resistant Staphylococcus aureus (MRSA). International Journal of Antimicrobial Agents, 2011, 37, 140-144.	2.5	81
10	Investigating the Causes for Decreased Levels of Glutathione in Individuals with Type II Diabetes. PLoS ONE, 2015, 10, e0118436.	2.5	81
11	Glutathione levels and immune responses in tuberculosis patients. Microbial Pathogenesis, 2008, 44, 255-261.	2.9	76
12	Role of Glutathione in Macrophage Control of Mycobacteria. Infection and Immunity, 2003, 71, 1864-1871.	2.2	74
13	Glutathione and Adaptive Immune Responses against Mycobacterium tuberculosis Infection in Healthy and HIV Infected Individuals. PLoS ONE, 2011, 6, e28378.	2.5	70
14	Unveiling the Mechanisms for Decreased Glutathione in Individuals with HIV Infection. Clinical and Developmental Immunology, 2012, 2012, 1-10.	3.3	67
15	Control of <i>Mycobacterium tuberculosis < /i> growth by activated natural killer cells. Clinical and Experimental Immunology, 2012, 168, 142-152.</i>	2.6	67
16	Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. International Journal of Molecular Sciences, 2021, 22, 5797.	4.1	64
17	Liposomal Glutathione Supplementation Restores T _H 1 Cytokine Response to <i>Mycobacterium tuberculosis</i> Infection in HIV-Infected Individuals. Journal of Interferon and Cytokine Research, 2015, 35, 875-887.	1.2	57
18	Natural Killer Cells, Glutathione, Cytokines, and Innate Immunity Against <i>Mycobacterium tuberculosis</i> . Journal of Interferon and Cytokine Research, 2008, 28, 153-165.	1.2	56

#	Article	IF	Citations
19	Characterization of a Glutathione Metabolic Mutant of Mycobacterium tuberculosis and Its Resistance to Glutathione and Nitrosoglutathione. Journal of Bacteriology, 2006, 188, 1364-1372.	2.2	54
20	Glutathione Supplementation as an Adjunctive Therapy in COVID-19. Antioxidants, 2020, 9, 914.	5.1	48
21	Glutathione Supplementation Improves Macrophage Functions in HIV. Journal of Interferon and Cytokine Research, 2013, 33, 270-279.	1.2	47
22	Investigating the Role of Everolimus in mTOR Inhibition and Autophagy Promotion as a Potential Host-Directed Therapeutic Target in Mycobacterium tuberculosis Infection. Journal of Clinical Medicine, 2019, 8, 232.	2.4	43
23	Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Frontiers in Pharmacology, 2014, 5, 73.	3.5	40
24	Glutathione and growth inhibition of Mycobacterium tuberculosis in healthy and HIV infected subjects. AIDS Research and Therapy, 2006, 3, 5.	1.7	39
25	The Synergistic Effects of the Glutathione Precursor, NAC and First-Line Antibiotics in the Granulomatous Response Against Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2069.	4.8	38
26	Arginine Homeostasis in J774.1 Macrophages in the Context of Mycobacterium bovis BCG Infection. Journal of Bacteriology, 2006, 188, 4830-4840.	2.2	37
27	Both leukotoxin and poly-N-acetylglucosamine surface polysaccharide protect Aggregatibacter actinomycetemcomitans cells from macrophage killing. Microbial Pathogenesis, 2008, 45, 173-180.	2.9	37
28	Restoring Cytokine Balance in HIV-Positive Individuals with Low CD4 T Cell Counts. AIDS Research and Human Retroviruses, 2017, 33, 905-918.	1.1	37
29	Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection. Journal of Clinical Medicine, 2017, 6, 15.	2.4	37
30	Root Causes of Fungal Coinfections in COVID-19 Infected Patients. Infectious Disease Reports, 2021, 13, 1018-1035.	3.1	30
31	Analysis of glutathione levels in the brain tissue samples from HIV-1-positive individuals and subject with Alzheimer's disease and its implication in the pathophysiology of the disease process. BBA Clinical, 2016, 6, 38-44.	4.1	26
32	Antimycobacterial Effects of Everolimus in a Human Granuloma Model. Journal of Clinical Medicine, 2020, 9, 2043.	2.4	26
33	Characterizing the Effects of Glutathione as an Immunoadjuvant in the Treatment of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	24
34	SARS-CoV-2 and the Immune Response in Pregnancy with Delta Variant Considerations. Infectious Disease Reports, 2021, 13, 993-1008.	3.1	24
35	Effects of Mycobacterium bovis BCG Infection on Regulation of I-Arginine Uptake and Synthesis of Reactive Nitrogen Intermediates in J774.1 Murine Macrophages. Infection and Immunity, 2001, 69, 5823-5831.	2.2	22
36	Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection. Journal of Clinical Medicine, 2020, 9, 3575.	2.4	22

#	Article	IF	Citations
37	Characterization of Dendritic Cell and Regulatory T Cell Functions against <i>Mycobacterium tuberculosis</i> Infection. BioMed Research International, 2013, 2013, 1-14.	1.9	20
38	Potentials of Host-Directed Therapies in Tuberculosis Management. Journal of Clinical Medicine, 2019, 8, 1166.	2.4	20
39	An Elucidation of Neutrophil Functions against <i>Mycobacterium tuberculosis</i> li>Infection. Clinical and Developmental Immunology, 2013, 2013, 1-11.	3.3	18
40	A review of the BCG vaccine and other approaches toward tuberculosis eradication. Human Vaccines and Immunotherapeutics, 2021, 17, 2454-2470.	3.3	18
41	TB and COVID-19: An Exploration of the Characteristics and Resulting Complications of Co-infection. Frontiers in Bioscience - Scholar, 2022, 14, 6.	2.1	18
42	Control of Mycobacterium tuberculosis Infection by Glutathione. Recent Patents on Anti-infective Drug Discovery, 2009, 4, 214-226.	0.8	17
43	Effects of ReadiSorb L-GSH in Altering Granulomatous Responses against Mycobacterium tuberculosis Infection. Journal of Clinical Medicine, 2018, 7, 40.	2.4	15
44	Nitric oxide regulation of l-arginine uptake in murine and human macrophages. Tuberculosis, 2003, 83, 311-318.	1.9	14
45	Modulation of J774.1 Macrophage l- Arginine Metabolism by Intracellular Mycobacterium bovis BCG. Infection and Immunity, 2003, 71, 1011-1015.	2.2	14
46	Flavonoid Mixture Inhibits Mycobacterium tuberculosis Survival and Infectivity. Molecules, 2019, 24, 851.	3.8	14
47	A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. International Journal of Molecular Sciences, 2020, 21, 6148.	4.1	14
48	Effects of Oral Liposomal Glutathione in Altering the Immune Responses Against Mycobacterium tuberculosis and the Mycobacterium bovis BCG Strain in Individuals With Type 2 Diabetes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 657775.	3.9	14
49	Analysis of Tuberculosis Meningitis Pathogenesis, Diagnosis, and Treatment. Journal of Clinical Medicine, 2020, 9, 2962.	2.4	13
50	The Role of Dendritic Cells in TB and HIV Infection. Journal of Clinical Medicine, 2020, 9, 2661.	2.4	11
51	Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines, 2022, 10, 390.	4.4	9
52	Type 2 Diabetes Contributes to Altered Adaptive Immune Responses and Vascular Inflammation in Patients With SARS-CoV-2 Infection. Frontiers in Immunology, 2022, 13, 833355.	4.8	8
53	L-GSH Supplementation in Conjunction With Rifampicin Augments the Treatment Response to Mycobacterium tuberculosis in a Diabetic Mouse Model. Frontiers in Pharmacology, $0,13,.$	3.5	8
54	Elucidating the Efficacy of the Bacille Calmette–Guérin Vaccination in Conjunction with First Line Antibiotics and Liposomal Glutathione. Journal of Clinical Medicine, 2019, 8, 1556.	2.4	7

#	Article	IF	Citations
55	Global View of HIV Infection. , 2011, , .		7
56	Liposomal Glutathione Helps to Mitigate Mycobacterium tuberculosis Infection in the Lungs. Antioxidants, 2022, 11, 673.	5.1	7
57	Data on pro-inflammatory cytokines IL- $\hat{1}^2$, IL- 17 , and IL-6 in the peripheral blood of HIV-infected individuals. Data in Brief, 2016, 8, 1044-1047.	1.0	6
58	The preclinical candidate indole-2-carboxamide improves immune responses to Mycobacterium tuberculosis infection in healthy subjects and individuals with type 2 diabetes. International Microbiology, 2020, 23, 161-170.	2.4	6
59	Understanding the Relationship between Glutathione, $TGF-\hat{l}^2$, and Vitamin D in Combating Mycobacterium tuberculosis Infections. Journal of Clinical Medicine, 2020, 9, 2757.	2.4	6
60	The Effects of Oral Liposomal Glutathione and In Vitro Everolimus in Altering the Immune Responses against <i>Mycobacterium bovis</i> BCG Strain in Individuals with Type 2 Diabetes. Biomolecular Concepts, 2021, 12, 16-26.	2.2	6
61	Analysis of COVID-19 on Diagnosis, Vaccine, Treatment, and Pathogenesis with Clinical Scenarios. Clinics and Practice, 2021, 11, 309-321.	1.4	6
62	Effects of Glutathione Diminishment on the Immune Responses against Mycobacterium tuberculosis Infection. Applied Sciences (Switzerland), 2021, 11, 8274.	2.5	6
63	Mycobacterium tuberculosis. Journal of Immunology Research, 2015, 2015, 1-2.	2.2	5
64	Cyclic Peptide [R4W4] in Improving the Ability of First-Line Antibiotics to Inhibit Mycobacterium tuberculosis Inside in vitro Human Granulomas. Frontiers in Immunology, 2020, 11, 1677.	4.8	5
65	Atherosclerosis: pathogenesis and increased occurrence in individuals with HIV and Mycobacterium tuberculosis infection. HIV/AIDS - Research and Palliative Care, 2010, 2, 211.	0.8	4
66	Exploring Potential COPD Immunosuppression Pathways Causing Increased Susceptibility for MAC Infections among COPD Patients. Clinics and Practice, 2021, 11, 619-630.	1.4	4
67	Liposomes as Carriers for the Delivery of Efavirenz in Combination with Glutathione—An Approach to Combat Opportunistic Infections. Applied Sciences (Switzerland), 2022, 12, 1468.	2.5	4
68	Dendritic cells in infectious disease, hypersensitivity, and autoimmunity. International Journal of Interferon, Cytokine and Mediator Research, 2010, , 137.	1.1	3
69	Role of Cytokines and Chemokines in HIV Infection. , 0, , .		3
70	Hyperlipidemia and Obesity's Role in Immune Dysregulation Underlying the Severity of COVID-19 Infection. Clinics and Practice, 2021, 11, 694-707.	1.4	3
71	Review of the Effectiveness of Various Adjuvant Therapies in Treating Mycobacterium tuberculosis. Infectious Disease Reports, 2021, 13, 821-834.	3.1	3
72	Everolimus-induced effector mechanism in macrophages and survivability of Erdman, CDC1551 and HN878 strains of <i>Mycobacterium tuberculosis</i> i> infection. Biomolecular Concepts, 2021, 12, 46-54.	2.2	3

#	Article	IF	CITATIONS
73	Recent Advances in Mycobacterial Research. Journal of Clinical Medicine, 2020, 9, 2650.	2.4	2
74	Cigarette Smoking and Increased Susceptibility to Mycobacterium tuberculosis Infection. , 2018, , $111\text{-}125$.		1
75	Opportunistic Infections in HIV Individuals and Enhanced Immunity by Glutathione â^—., 2018, , 135-147.		1
76	Complement 3 Receptor Expression in Individuals with Type 2 Diabetes. Recent Patents on Anti-infective Drug Discovery, 2016, 11, 174-182.	0.8	1
77	Editorial: Causes for Increased Susceptibility to Mycobacterium tuberculosis – A Close View of the Immune System. Frontiers in Immunology, 2015, 6, 545.	4.8	O
78	Novel Antimycobacterial Drugs and Host-Directed Therapies for Tuberculosis., 2018,, 99-109.		0
79	Selenium Supplementation, Antioxidant Effects, and Immune Restorative Effects in Human Immunodeficiency Virus â^— â^—All authors contributed equally , 2018, , 197-205.		O
80	Investigating the Role of Threonylcarbamoyl Adenosine in HIVâ€1 Replication in vivo. FASEB Journal, 2015, 29, 711.19.	0.5	0
81	Glutathione, Immunity, and Infection., 2017, , 375-386.		O
82	Thyroid Hormone Resistant Syndrome. Medical Journal of Southern California Clinicians, 2020, , 6-10.	0.2	0