AgustÃ-n Valenzuela-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633901/publications.pdf

Version: 2024-02-01

52 papers 2,972 citations

218677 26 h-index 51 g-index

61 all docs

61 docs citations

61 times ranked

4541 citing authors

#	Article	IF	Citations
1	The Characteristics of the HIV-1 Env Glycoprotein Are Linked With Viral Pathogenesis. Frontiers in Microbiology, 2022, 13, 763039.	3.5	7
2	A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines, 2022, 10, 13.	3.2	5
3	Association of the Delta SARS-CoV-2 variant with 28-day hospital mortality between December 2020 and September 2021. Journal of Infection, 2022, 85, 90-122.	3.3	2
4	Transactive Response DNA-Binding Protein (TARDBP/TDP-43) Regulates Cell Permissivity to HIV-1 Infection by Acting on HDAC6. International Journal of Molecular Sciences, 2022, 23, 6180.	4.1	6
5	Increasing SARS-CoV-2 RT-qPCR testing capacity by sample pooling. International Journal of Infectious Diseases, 2021, 103, 19-22.	3.3	31
6	Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines, 2021, 9, 294.	4.4	12
7	The Interplay of HIV and Autophagy in Early Infection. Frontiers in Microbiology, 2021, 12, 661446.	3.5	20
8	Monitoring the rise of the SARS-CoV-2 lineage B.1.1.7 in Tenerife (Spain) since mid-December 2020. Journal of Infection, 2021, 82, e1-e3.	3.3	6
9	Longitudinal study of a SARS-CoV-2 infection in an immunocompromised patient with X-linked agammaglobulinemia. Journal of Infection, 2021, 83, 607-635.	3.3	11
10	Sensitivity of different RT-qPCR solutions for SARS-CoV-2 detection. International Journal of Infectious Diseases, 2020, 99, 190-192.	3.3	56
11	Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples. International Journal of Infectious Diseases, 2020, 97, 66-68.	3.3	73
12	HIV-1 envelope glycoproteins isolated from Viremic Non-Progressor individuals are fully functional and cytopathic. Scientific Reports, 2019, 9, 5544.	3.3	17
13	Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine, 2019, 42, 86-96.	6.1	55
14	HIV-1 Nef Targets HDAC6 to Assure Viral Production and Virus Infection. Frontiers in Microbiology, 2019, 10, 2437.	3 . 5	13
15	Lower expression of plasma-derived exosome miR-21 levels in HIV-1 elite controllers with decreasing CD4 T cell count. Journal of Microbiology, Immunology and Infection, 2019, 52, 667-671.	3.1	14
16	Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. MBio, 2018, 9, .	4.1	37
17	High Plasma Levels of sTNF-R1 and CCL11 Are Related to CD4+ T-Cells Fall in Human Immunodeficiency Virus Elite Controllers With a Sustained Virologic Control. Frontiers in Immunology, 2018, 9, 1399.	4.8	3
18	HLA-B*57 and IFNL4-related polymorphisms are associated with protection against HIV-1 disease progression in controllers. Clinical Infectious Diseases, 2017, 64, ciw833.	5 . 8	28

#	Article	IF	CITATIONS
19	HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity. Scientific Reports, 2017, 7, 40037.	3.3	20
20	Membrane dynamics associated with viral infection. Reviews in Medical Virology, 2016, 26, 146-160.	8.3	38
21	MicroRNA Profile in CD8+ T-Lymphocytes from HIV-Infected Individuals: Relationship with Antiviral Immune Response and Disease Progression. PLoS ONE, 2016, 11, e0155245.	2.5	22
22	The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology, 2015, 12, 53.	2.0	48
23	Quantitative Analysis of the Processes and Signaling Events Involved in Early HIV-1 Infection of T Cells. PLoS ONE, 2014, 9, e103845.	2.5	7
24	Gelsolin activity controls efficient early HIV-1 infection. Retrovirology, 2013, 10, 39.	2.0	39
25	Viral infection. Communicative and Integrative Biology, 2011, 4, 398-408.	1.4	7
26	HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes. Molecular Biology of the Cell, 2011, 22, 1148-1166.	2.1	47
27	Viral infection: Moving through complex and dynamic cell-membrane structures. Communicative and Integrative Biology, 2011, 4, 398-408.	1.4	5
28	Moesin Regulates the Trafficking of Nascent Clathrin-coated Vesicles. Journal of Biological Chemistry, 2009, 284, 2419-2434.	3.4	32
29	The Lupane-type Triterpene 30-Oxo-calenduladiol Is a CCR5 Antagonist with Anti-HIV-1 and Anti-chemotactic Activities. Journal of Biological Chemistry, 2009, 284, 16609-16620.	3.4	22
30	Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. Journal of Cell Science, 2009, 122, 103-113.	2.0	115
31	The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection. Journal of Virology, 2009, 83, 8012-8020.	3.4	138
32	HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Trends in Cell Biology, 2008, 18, 291-297.	7.9	438
33	PI4P5-Kinase lî± Is Required for Efficient HIV-1 Entry and Infection of T Cells. Journal of Immunology, 2008, 181, 6882-6888.	0.8	38
34	Expression and Regulation of the Metalloproteinase ADAM-8 during Human Neutrophil Pathophysiological Activation and Its Catalytic Activity on L-Selectin Shedding. Journal of Immunology, 2007, 178, 8053-8063.	0.8	103
35	Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1α. Journal of Cell Science, 2007, 120, 1126-1133.	2.0	62
36	Chemical modulation of VLA integrin affinity in human breast cancer cells. Experimental Cell Research, 2007, 313, 1121-1134.	2.6	12

#	Article	IF	CITATIONS
37	The role of actomyosin and the microtubular network in both the immunological synapse and T cell activation. Frontiers in Bioscience - Landmark, 2007, 12, 437.	3.0	8
38	Lymphocyte Chemotaxis Is Regulated by Histone Deacetylase 6, Independently of Its Deacetylase Activity. Molecular Biology of the Cell, 2006, 17, 3435-3445.	2.1	79
39	Tetraspanins CD9 and CD81 Modulate HIV-1-Induced Membrane Fusion. Journal of Immunology, 2006, 177, 5129-5137.	0.8	149
40	Histone Deacetylase 6 Regulates Human Immunodeficiency Virus Type 1 Infection. Molecular Biology of the Cell, 2005, 16, 5445-5454.	2.1	117
41	Effects of Rapamycin on the Epithelial-to-mesenchymal Transition of Human Peritoneal Mesothelial Cells. International Journal of Artificial Organs, 2005, 28, 164-169.	1.4	44
42	Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and Functions by Amino-terminal Processing of SDF-1 and CXCR4. Journal of Biological Chemistry, 2002, 277, 15677-15689.	3.4	189
43	Low levels of co-receptor CCR5 are sufficient to permit HIV envelope-mediated fusion with resting CD4 T cells. Aids, 2002, 16, 2337-2340.	2.2	18
44	Optimal Inhibition of X4 HIV Isolates by the CXC Chemokine Stromal Cell-derived Factor $1\hat{l}\pm$ Requires Interaction with Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry, 2001, 276, 26550-26558.	3.4	65
45	Palmitoylation-dependent Control of Degradation, Life Span, and Membrane Expression of the CCR5 Receptor. Journal of Biological Chemistry, 2001, 276, 31936-31944.	3.4	126
46	The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Letters, 2000, 477, 123-128.	2.8	32
47	Stromal Cell-derived Factor- $1\hat{l}\pm$ Associates with Heparan Sulfates through the First \hat{l}^2 -Strand of the Chemokine. Journal of Biological Chemistry, 1999, 274, 23916-23925.	3.4	296
48	Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological Reviews, 1998, 161, 27-42.	6.0	158
49	Pseudopeptide TASP Inhibitors of HIV Entry Bind Specifically to a 95-kDa Cell Surface Protein. Journal of Biological Chemistry, 1997, 272, 7159-7166.	3.4	22
50	HIV-1 Envelope gp120 and Viral Particles Block Adenosine Deaminase Binding to Human CD26. Advances in Experimental Medicine and Biology, 1997, 421, 185-192.	1.6	7
51	Neutralizing antibodies against the V3 loop of human immunodeficiency virus type $1\ \mathrm{gp}120$ block the CD4-dependent and -independent binding of virus to cells. Journal of Virology, $1997,71,8289-8298$.	3.4	58
52	Desarrollo de una Animación 3D sobre la Microscopia de Onda Evanescente y su aplicación en VirologÃa: una herramienta para el estudio y comprensión de los mecanismos de infección por microorganismos en célula viva. , 0, , 223-234.		1