
## AgustÃ-n Valenzuela-FernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633901/publications.pdf

Version: 2024-02-01



AgustÃn

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | HDAC6: a key regulator of cytoskeleton, cell migration and cell–cell interactions. Trends in Cell<br>Biology, 2008, 18, 291-297.                                                                                               | 7.9 | 438       |
| 2  | Stromal Cell-derived Factor-1α Associates with Heparan Sulfates through the First β-Strand of the<br>Chemokine. Journal of Biological Chemistry, 1999, 274, 23916-23925.                                                       | 3.4 | 296       |
| 3  | Leukocyte Elastase Negatively Regulates Stromal Cell-derived Factor-1 (SDF-1)/CXCR4 Binding and<br>Functions by Amino-terminal Processing of SDF-1 and CXCR4. Journal of Biological Chemistry, 2002,<br>277, 15677-15689.      | 3.4 | 189       |
| 4  | Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological<br>Reviews, 1998, 161, 27-42.                                                                                                      | 6.0 | 158       |
| 5  | Tetraspanins CD9 and CD81 Modulate HIV-1-Induced Membrane Fusion. Journal of Immunology, 2006, 177, 5129-5137.                                                                                                                 | 0.8 | 149       |
| 6  | The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus<br>Entry and Infection. Journal of Virology, 2009, 83, 8012-8020.                                                       | 3.4 | 138       |
| 7  | Palmitoylation-dependent Control of Degradation, Life Span, and Membrane Expression of the CCR5<br>Receptor. Journal of Biological Chemistry, 2001, 276, 31936-31944.                                                          | 3.4 | 126       |
| 8  | Histone Deacetylase 6 Regulates Human Immunodeficiency Virus Type 1 Infection. Molecular Biology of the Cell, 2005, 16, 5445-5454.                                                                                             | 2.1 | 117       |
| 9  | Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. Journal of Cell Science, 2009, 122, 103-113.                                           | 2.0 | 115       |
| 10 | Expression and Regulation of the Metalloproteinase ADAM-8 during Human Neutrophil<br>Pathophysiological Activation and Its Catalytic Activity on L-Selectin Shedding. Journal of<br>Immunology, 2007, 178, 8053-8063.          | 0.8 | 103       |
| 11 | Lymphocyte Chemotaxis Is Regulated by Histone Deacetylase 6, Independently of Its Deacetylase Activity.<br>Molecular Biology of the Cell, 2006, 17, 3435-3445.                                                                 | 2.1 | 79        |
| 12 | Fast SARS-CoV-2 detection by RT-qPCR in preheated nasopharyngeal swab samples. International Journal of Infectious Diseases, 2020, 97, 66-68.                                                                                  | 3.3 | 73        |
| 13 | Optimal Inhibition of X4 HIV Isolates by the CXC Chemokine Stromal Cell-derived Factor 1α Requires<br>Interaction with Cell Surface Heparan Sulfate Proteoglycans. Journal of Biological Chemistry, 2001,<br>276, 26550-26558. | 3.4 | 65        |
| 14 | Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1α. Journal of Cell Science, 2007, 120, 1126-1133.                                                                                                           | 2.0 | 62        |
| 15 | Neutralizing antibodies against the V3 loop of human immunodeficiency virus type 1 gp120 block the CD4-dependent and -independent binding of virus to cells. Journal of Virology, 1997, 71, 8289-8298.                         | 3.4 | 58        |
| 16 | Sensitivity of different RT-qPCR solutions for SARS-CoV-2 detection. International Journal of Infectious Diseases, 2020, 99, 190-192.                                                                                          | 3.3 | 56        |
| 17 | Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection.<br>EBioMedicine, 2019, 42, 86-96.                                                                                            | 6.1 | 55        |
| 18 | The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation.<br>Retrovirology, 2015, 12, 53.                                                                                               | 2.0 | 48        |

AgustÃn

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes.<br>Molecular Biology of the Cell, 2011, 22, 1148-1166.                                        | 2.1 | 47        |
| 20 | Effects of Rapamycin on the Epithelial-to-mesenchymal Transition of Human Peritoneal Mesothelial<br>Cells. International Journal of Artificial Organs, 2005, 28, 164-169.                   | 1.4 | 44        |
| 21 | Gelsolin activity controls efficient early HIV-1 infection. Retrovirology, 2013, 10, 39.                                                                                                    | 2.0 | 39        |
| 22 | PI4P5-Kinase lα Is Required for Efficient HIV-1 Entry and Infection of T Cells. Journal of Immunology, 2008, 181, 6882-6888.                                                                | 0.8 | 38        |
| 23 | Membrane dynamics associated with viral infection. Reviews in Medical Virology, 2016, 26, 146-160.                                                                                          | 8.3 | 38        |
| 24 | Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers. MBio, 2018, 9, .                             | 4.1 | 37        |
| 25 | The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Letters, 2000, 477, 123-128.                                 | 2.8 | 32        |
| 26 | Moesin Regulates the Trafficking of Nascent Clathrin-coated Vesicles. Journal of Biological Chemistry, 2009, 284, 2419-2434.                                                                | 3.4 | 32        |
| 27 | Increasing SARS-CoV-2 RT-qPCR testing capacity by sample pooling. International Journal of Infectious Diseases, 2021, 103, 19-22.                                                           | 3.3 | 31        |
| 28 | HLA-B*57 and IFNL4-related polymorphisms are associated with protection against HIV-1 disease progression in controllers. Clinical Infectious Diseases, 2017, 64, ciw833.                   | 5.8 | 28        |
| 29 | Pseudopeptide TASP Inhibitors of HIV Entry Bind Specifically to a 95-kDa Cell Surface Protein. Journal of Biological Chemistry, 1997, 272, 7159-7166.                                       | 3.4 | 22        |
| 30 | The Lupane-type Triterpene 30-Oxo-calenduladiol Is a CCR5 Antagonist with Anti-HIV-1 and Anti-chemotactic Activities. Journal of Biological Chemistry, 2009, 284, 16609-16620.              | 3.4 | 22        |
| 31 | MicroRNA Profile in CD8+ T-Lymphocytes from HIV-Infected Individuals: Relationship with Antiviral<br>Immune Response and Disease Progression. PLoS ONE, 2016, 11, e0155245.                 | 2.5 | 22        |
| 32 | HIV-1 Env associates with HLA-C free-chains at the cell membrane modulating viral infectivity.<br>Scientific Reports, 2017, 7, 40037.                                                       | 3.3 | 20        |
| 33 | The Interplay of HIV and Autophagy in Early Infection. Frontiers in Microbiology, 2021, 12, 661446.                                                                                         | 3.5 | 20        |
| 34 | Low levels of co-receptor CCR5 are sufficient to permit HIV envelope-mediated fusion with resting CD4<br>T cells. Aids, 2002, 16, 2337-2340.                                                | 2.2 | 18        |
| 35 | HIV-1 envelope glycoproteins isolated from Viremic Non-Progressor individuals are fully functional and cytopathic. Scientific Reports, 2019, 9, 5544.                                       | 3.3 | 17        |
| 36 | Lower expression of plasma-derived exosome miR-21 levels in HIV-1 elite controllers with decreasing CD4 T cell count. Journal of Microbiology, Immunology and Infection, 2019, 52, 667-671. | 3.1 | 14        |

AgustÃn

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | HIV-1 Nef Targets HDAC6 to Assure Viral Production and Virus Infection. Frontiers in Microbiology, 2019, 10, 2437.                                                                                                                           | 3.5 | 13        |
| 38 | Chemical modulation of VLA integrin affinity in human breast cancer cells. Experimental Cell Research, 2007, 313, 1121-1134.                                                                                                                 | 2.6 | 12        |
| 39 | Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines, 2021, 9, 294.                                                                                                                                                                | 4.4 | 12        |
| 40 | Longitudinal study of a SARS-CoV-2 infection in an immunocompromised patient with X-linked agammaglobulinemia. Journal of Infection, 2021, 83, 607-635.                                                                                      | 3.3 | 11        |
| 41 | The role of actomyosin and the microtubular network in both the immunological synapse and T cell activation. Frontiers in Bioscience - Landmark, 2007, 12, 437.                                                                              | 3.0 | 8         |
| 42 | Viral infection. Communicative and Integrative Biology, 2011, 4, 398-408.                                                                                                                                                                    | 1.4 | 7         |
| 43 | HIV-1 Envelope gp120 and Viral Particles Block Adenosine Deaminase Binding to Human CD26. Advances<br>in Experimental Medicine and Biology, 1997, 421, 185-192.                                                                              | 1.6 | 7         |
| 44 | Quantitative Analysis of the Processes and Signaling Events Involved in Early HIV-1 Infection of T Cells.<br>PLoS ONE, 2014, 9, e103845.                                                                                                     | 2.5 | 7         |
| 45 | The Characteristics of the HIV-1 Env Glycoprotein Are Linked With Viral Pathogenesis. Frontiers in Microbiology, 2022, 13, 763039.                                                                                                           | 3.5 | 7         |
| 46 | Monitoring the rise of the SARS-CoV-2 lineage B.1.1.7 in Tenerife (Spain) since mid-December 2020.<br>Journal of Infection, 2021, 82, e1-e3.                                                                                                 | 3.3 | 6         |
| 47 | Transactive Response DNA-Binding Protein (TARDBP/TDP-43) Regulates Cell Permissivity to HIV-1<br>Infection by Acting on HDAC6. International Journal of Molecular Sciences, 2022, 23, 6180.                                                  | 4.1 | 6         |
| 48 | Viral infection: Moving through complex and dynamic cell-membrane structures. Communicative and Integrative Biology, 2011, 4, 398-408.                                                                                                       | 1.4 | 5         |
| 49 | A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines, 2022, 10, 13.                                                                                            | 3.2 | 5         |
| 50 | High Plasma Levels of sTNF-R1 and CCL11 Are Related to CD4+ T-Cells Fall in Human Immunodeficiency<br>Virus Elite Controllers With a Sustained Virologic Control. Frontiers in Immunology, 2018, 9, 1399.                                    | 4.8 | 3         |
| 51 | Association of the Delta SARS-CoV-2 variant with 28-day hospital mortality between December 2020 and September 2021. Journal of Infection, 2022, 85, 90-122.                                                                                 | 3.3 | 2         |
| 52 | Desarrollo de una Animación 3D sobre la Microscopia de Onda Evanescente y su aplicación en<br>VirologÃa: una herramienta para el estudio y comprensión de los mecanismos de infección por<br>microorganismos en célula viva. , 0, , 223-234. |     | 1         |