
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633876/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of<br>Nonlinear Pulses. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68,<br>1040-1050.                          | 1.7 | 12        |
| 2  | Treating Porcine Abscesses with Histotripsy: A Pilot Study. Ultrasound in Medicine and Biology, 2021, 47, 603-619.                                                                                                                           | 0.7 | 9         |
| 3  | Numerical Simulation of a Nonlinear Parabolic Equation for Analyzing The Perceived Loudness<br>Statistics of Sonic Boom Wave after Propagation Through Atmospheric Turbulent Layer. Acoustical<br>Physics, 2021, 67, 26-37.                  | 0.2 | 6         |
| 4  | Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions. Journal of the Acoustical Society of America, 2021, 149, 386-404.                                    | 0.5 | 2         |
| 5  | A Prototype Therapy System for Boiling Histotripsy in Abdominal Targets Based on a 256-Element Spiral<br>Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1496-1510.                                | 1.7 | 22        |
| 6  | Introduction to the Special Issue on Histotripsy: Approaches, Mechanisms, Hardware, and Applications.<br>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2834-2836.                                       | 1.7 | 2         |
| 7  | Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses. IEEE Transactions on<br>Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2884-2895.                                                               | 1.7 | 10        |
| 8  | Dual-Use Transducer for Ultrasound Imaging and Pulsed Focused Ultrasound Therapy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2930-2941.                                                              | 1.7 | 3         |
| 9  | Partial Respiratory Motion Compensation for Abdominal Extracorporeal Boiling Histotripsy<br>Treatments With a Robotic Arm. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency<br>Control, 2021, 68, 2861-2870.                  | 1.7 | 12        |
| 10 | Ultrastructural Analysis of Volumetric Histotripsy Bio-effects in Large Human Hematomas.<br>Ultrasound in Medicine and Biology, 2021, 47, 2608-2621.                                                                                         | 0.7 | 6         |
| 11 | "HIFU Beam:―A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by<br>Focused Transducers in a Layered Medium. IEEE Transactions on Ultrasonics, Ferroelectrics, and<br>Frequency Control, 2021, 68, 2837-2852. | 1.7 | 23        |
| 12 | Histotripsy: The Next Generation of Highâ€Intensity Focused Ultrasound for Focal Prostate Cancer<br>Therapy. Journal of Ultrasound in Medicine, 2020, 39, 1057-1067.                                                                         | 0.8 | 20        |
| 13 | Noninvasive acoustic manipulation of objects in a living body. Proceedings of the National Academy of<br>Sciences of the United States of America, 2020, 117, 16848-16855.                                                                   | 3.3 | 77        |
| 14 | Effect of Stiffness of Large Extravascular Hematomas on Their Susceptibility to Boiling Histotripsy<br>Liquefaction in Vitro. Ultrasound in Medicine and Biology, 2020, 46, 2007-2016.                                                       | 0.7 | 8         |
| 15 | Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications. Journal of the Acoustical Society of America, 2020, 148, 3569-3580.                                                                              | 0.5 | 6         |
| 16 | Quantification of Acoustic Radiation Forces on Solid Objects in Fluid. Physical Review Applied, 2019, 12, .                                                                                                                                  | 1.5 | 17        |
| 17 | Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction. Journal of the Acoustical Society of America, 2019, 146, 1786-1798.                       | 0.5 | 19        |
| 18 | Irregular reflection of spark-generated shock pulses from a rigid surface: Mach-Zehnder<br>interferometry measurements in air. Journal of the Acoustical Society of America, 2019, 145, 26-35.                                               | 0.5 | 7         |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Using acoustic holography to characterize absorbing layers. Proceedings of Meetings on Acoustics, 2019, , .                                                                                                                 | 0.3 | 2         |
| 20 | Simulation of N-wave propagation in a realistic turbulent atmosphere using two-dimensional nonlinear parabolic equation. , 2019, , .                                                                                        |     | 1         |
| 21 | Pilot in vivo studies on transcutaneous boiling histotripsy in porcine liver and kidney. Scientific Reports, 2019, 9, 20176.                                                                                                | 1.6 | 32        |
| 22 | Effect of surface roughness on nonlinear reflection of weak shock waves. Journal of the Acoustical<br>Society of America, 2019, 146, EL438-EL443.                                                                           | 0.5 | 5         |
| 23 | 10.1121/1.5133737.1., 2019,,.                                                                                                                                                                                               |     | 0         |
| 24 | Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery<br>Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65,<br>630-637.               | 1.7 | 25        |
| 25 | Design of a Fully Populated Phased Array for Transcranial HIFU Therapies Based on Shock-Wave Exposures with Aberration Correction. , 2018, , .                                                                              |     | 0         |
| 26 | Mechanical decellularization of tissue volumes using boiling histotripsy. Physics in Medicine and Biology, 2018, 63, 235023.                                                                                                | 1.6 | 22        |
| 27 | Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer<br><i>F</i> -number and nonlinear waveform distortion. Journal of the Acoustical Society of America,<br>2018, 144, 1160-1169.  | 0.5 | 20        |
| 28 | Inactivation of Planktonic Escherichia coli by Focused 1-MHz Ultrasound Pulses with Shocks: Efficacy<br>and Kinetics Upon Volume Scale-Up. Ultrasound in Medicine and Biology, 2018, 44, 1996-2008.                         | 0.7 | 12        |
| 29 | Field Characterization and Compensation of Vibrational Nonuniformity for a 256-Element Focused<br>Ultrasound Phased Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,<br>2018, 65, 1618-1630. | 1.7 | 23        |
| 30 | Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe. Journal of the Acoustical Society of America, 2017, 141, 2327-2337.                                             | 0.5 | 12        |
| 31 | International Society for Therapeutic Ultrasound Conference 2016. Journal of Therapeutic<br>Ultrasound, 2017, 5, .                                                                                                          | 2.2 | 1         |
| 32 | A Prototype Therapy System for Transcutaneous Application of Boiling Histotripsy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1542-1557.                                             | 1.7 | 55        |
| 33 | MP100-02 BOILING HISTOTRIPSY ABLATION OF RENAL CARCINOMA IN A CHRONIC RAT MODEL. Journal of Urology, 2017, 197, .                                                                                                           | 0.2 | 2         |
| 34 | Statistics of peak overpressure and shock steepness for linear and nonlinear <i>N</i> -wave propagation in a kinematic turbulence. Journal of the Acoustical Society of America, 2017, 142, 3402-3415.                      | 0.5 | 11        |
| 35 | Dependence of Boiling Histotripsy Treatment Efficiency on HIFU Frequency and Focal Pressure Levels.<br>Ultrasound in Medicine and Biology, 2017, 43, 1975-1985.                                                             | 0.7 | 42        |
| 36 | Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 374-390.                                                | 1.7 | 67        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Measurement and modeling of acoustic radiation force of focused ultrasound beam on an elastic sphere in water. Proceedings of Meetings on Acoustics, 2017, , .                               | 0.3 | 0         |
| 38 | Notice of Removal: Design and characterization of a 2-dimensional focused 1.5-MHz ultrasound array with a compact spiral arrangement of 256 circular elements. , 2017, , .                   |     | 0         |
| 39 | Inactivation of Planktonic Escherichia coli by High Intensity Focused Ultrasound pulses. Proceedings of Meetings on Acoustics, 2017, , .                                                     | 0.3 | 0         |
| 40 | Design and characterization of a research phantom for shock-wave enhanced irradiations in high intensity focused ultrasound therapy. , 2017, , .                                             |     | 0         |
| 41 | Design and characterization of a research phantom for shock-wave enhanced irradiations in high intensity focused ultrasound therapy. , 2017, , .                                             |     | 0         |
| 42 | Reconstruction of nonlinear ultrasound field of an annular therapeutic array from acoustic holograms of its individual elements. Proceedings of Meetings on Acoustics, 2017, 32, .           | 0.3 | 3         |
| 43 | Design of HIFU Transducers to Generate Specific Nonlinear Ultrasound Fields. Physics Procedia, 2016, 87, 132-138.                                                                            | 1.2 | 23        |
| 44 | An Ultrasonic Caliper Device for Measuring Acoustic Nonlinearity. Physics Procedia, 2016, 87, 93-98.                                                                                         | 1.2 | 2         |
| 45 | PD19-11 PILOT ASSESSMENT OF TRANSCUTANEOUS BOILING HISTOTRIPSY ABLATION OF THE KIDNEY IN THE PORCINE MODEL. Journal of Urology, 2016, 195, .                                                 | 0.2 | 0         |
| 46 | Steepening and smearing of shock front of nonlinear N-wave propagating in a turbulent layer. , 2016, , .                                                                                     |     | 1         |
| 47 | Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields. Journal of the Acoustical Society of America, 2015, 138, 1515-1532.                     | 0.5 | 82        |
| 48 | Investigation into the Mechanisms of Tissue Atomization by High-Intensity Focused Ultrasound.<br>Ultrasound in Medicine and Biology, 2015, 41, 1372-1385.                                    | 0.7 | 16        |
| 49 | Characterization of spark-generated <i>N</i> -waves in air using an optical schlieren method. Journal of the Acoustical Society of America, 2015, 137, 3244-3252.                            | 0.5 | 16        |
| 50 | Ultrasonic atomization of liquids in drop-chain acoustic fountains. Journal of Fluid Mechanics, 2015, 766, 129-146.                                                                          | 1.4 | 61        |
| 51 | Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications.<br>International Journal of Hyperthermia, 2015, 31, 145-162.                                      | 1.1 | 216       |
| 52 | Mach-Zehnder interferometry method for acoustic shock wave measurements in air and broadband calibration of microphones. Journal of the Acoustical Society of America, 2015, 137, 3314-3324. | 0.5 | 29        |
| 53 | Mach stem formation in reflection and focusing of weak shock acoustic pulses. Journal of the Acoustical Society of America, 2015, 137, EL436-EL442.                                          | 0.5 | 25        |
| 54 | Laboratory-scale experiment to study nonlinearN-wave distortion by thermal turbulence. Journal of the Acoustical Society of America, 2014, 136, 556-566.                                     | 0.5 | 17        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Counterpropagation of waves with shock fronts in a nonlinear tissue-like medium. Acoustical Physics, 2014, 60, 387-397.                                                                                                     | 0.2 | 1         |
| 56 | Ultrasound-guided tissue fractionation by high intensity focused ultrasound in an in vivo porcine<br>liver model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111,<br>8161-8166. | 3.3 | 89        |
| 57 | Infrared mapping of ultrasound fields generated by medical transducers: Feasibility of determining absolute intensity levels. Journal of the Acoustical Society of America, 2013, 134, 1586-1597.                           | 0.5 | 15        |
| 58 | Histological and Biochemical Analysis of Mechanical and Thermal Bioeffects in Boiling Histotripsy<br>Lesions Induced by High Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2013, 39,<br>424-438.        | 0.7 | 91        |
| 59 | Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear<br>modeling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60,<br>1683-1698.              | 1.7 | 114       |
| 60 | The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array. Physics in Medicine and Biology, 2013, 58, 2537-2559.                                         | 1.6 | 35        |
| 61 | Rectified growth of histotripsy bubbles. Proceedings of Meetings on Acoustics, 2013, 19, .                                                                                                                                  | 0.3 | 9         |
| 62 | Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device. Journal of the Acoustical Society of America, 2013, 134, 1663-1674.                                      | 0.5 | 32        |
| 63 | Introduction to the special issue on therapeutic ultrasound. Journal of the Acoustical Society of America, 2013, 134, 1441-1441.                                                                                            | 0.5 | 0         |
| 64 | Ultrasonic atomization: A mechanism of tissue fractionation. Proceedings of Meetings on Acoustics, 2013, , .                                                                                                                | 0.3 | 0         |
| 65 | Ultrasonic atomization: A mechanism of tissue fractionation. Journal of the Acoustical Society of America, 2013, 133, 3316-3316.                                                                                            | 0.5 | 0         |
| 66 | Tissue atomization by high intensity focused ultrasound. , 2012, 2012, 1003-1006.                                                                                                                                           |     | 2         |
| 67 | Characterization of nonlinear ultrasound fields of 2D therapeutic arrays. , 2012, 2012, 1-4.                                                                                                                                |     | 6         |
| 68 | Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Physics in Medicine and Biology, 2012, 57, 8061-8078.                                                           | 1.6 | 95        |
| 69 | Disintegration of Tissue Using High Intensity Focused Ultrasound: Two Approaches That Utilize Shock<br>Waves. Acoustics Today, 2012, 8, 24.                                                                                 | 1.0 | 86        |
| 70 | Mechanisms for saturation of nonlinear pulsed and periodic signals in focused acoustic beams.<br>Acoustical Physics, 2012, 58, 81-89.                                                                                       | 0.2 | 23        |
| 71 | Random focusing of nonlinear acoustic <i>N</i> -waves in fully developed turbulence: Laboratory scale experiment. Journal of the Acoustical Society of America, 2011, 130, 3595-3607.                                       | 0.5 | 29        |
| 72 | The dynamics of histotripsy bubbles. AIP Conference Proceedings, 2011, , .                                                                                                                                                  | 0.3 | 1         |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays. Acoustical Physics, 2011, 57, 334-343.                                                                            | 0.2 | 82        |
| 74 | Simulation of thermal lesions in biological tissues irradiated by high-intensity focused ultrasound through the rib cage. Physics of Wave Phenomena, 2011, 19, 62-67.                                | 0.3 | 4         |
| 75 | Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling. Journal of the Acoustical Society of America, 2011, 130, 3498-3510.              | 0.5 | 154       |
| 76 | Nonlinear and diffraction effects in propagation ofN-waves in randomly inhomogeneous moving media. Journal of the Acoustical Society of America, 2011, 129, 1760-1772.                               | 0.5 | 38        |
| 77 | Statistical properties of nonlinear diffracting N-wave behind a random phase screen. Acoustical Physics, 2010, 56, 158-167.                                                                          | 0.2 | 2         |
| 78 | A derating method for therapeutic applications of high intensity focused ultrasound. Acoustical Physics, 2010, 56, 354-363.                                                                          | 0.2 | 50        |
| 79 | Distortion of the focused finite amplitude ultrasound beam behind the random phase layer.<br>Acoustical Physics, 2010, 56, 467-474.                                                                  | 0.2 | 6         |
| 80 | Focus splitting associated with propagation of focused ultrasound through the rib cage. Acoustical Physics, 2010, 56, 665-674.                                                                       | 0.2 | 22        |
| 81 | Nonlinear propagation of spark-generated <i>N</i> -waves in air: Modeling and measurements using acoustical and optical methods. Journal of the Acoustical Society of America, 2010, 128, 3321-3333. | 0.5 | 33        |
| 82 | Therapeutic ultrasound: Recent trends and future perspectives. Physics Procedia, 2010, 3, 25-34.                                                                                                     | 1.2 | 22        |
| 83 | Focusing of High-Intensity Ultrasound Through the Rib Cage Using a Therapeutic Random Phased<br>Array. Ultrasound in Medicine and Biology, 2010, 36, 888-906.                                        | 0.7 | 91        |
| 84 | Shock-Induced Heating and Millisecond Boiling in Gels and Tissue Due to High Intensity Focused Ultrasound. Ultrasound in Medicine and Biology, 2010, 36, 250-267.                                    | 0.7 | 181       |
| 85 | Tissue Erosion Using Shock Wave Heating and Millisecond Boiling in HIFU Fields. , 2010, , .                                                                                                          |     | 7         |
| 86 | Magnetic resonance imaging of boiling induced by high intensity focused ultrasound. Journal of the<br>Acoustical Society of America, 2009, 125, 2420-2431.                                           | 0.5 | 71        |
| 87 | Spatial structure of high intensity focused ultrasound beams of various geometry. Physics of Wave<br>Phenomena, 2009, 17, 45-49.                                                                     | 0.3 | 4         |
| 88 | Focusing of high power ultrasound beams and limiting values of shock wave parameters. Acoustical<br>Physics, 2009, 55, 463-473.                                                                      | 0.2 | 64        |
| 89 | Diffraction effects accompanying focused ultrasonic pulse propagation in a medium with a thermal inhomogeneity. Acoustical Physics, 2009, 55, 474-481.                                               | 0.2 | 1         |
| 90 | Nonlinear spherically divergent shock waves propagating in a relaxing medium. Acoustical Physics, 2008, 54, 32-41.                                                                                   | 0.2 | 17        |

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Spatial Distributions Of Acoustic Parameters In Nonlinear Focused Beams Of Various Geometry. AIP Conference Proceedings, 2008, , .                                                                             | 0.3 | 1         |
| 92  | Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. Journal of the Acoustical Society of America, 2008, 124, 2406-2420.                       | 0.5 | 258       |
| 93  | Variation of the Shape and Electronic Steering of Focal Volumes in HIFU with the Use of Random 2-D<br>Phased Arrays. AIP Conference Proceedings, 2007, , .                                                     | 0.3 | 0         |
| 94  | Use of a bovine eye lens for observation of HIFU-induced lesions in real-time. Ultrasound in Medicine and Biology, 2006, 32, 1731-1741.                                                                        | 0.7 | 13        |
| 95  | Nonlinear pulsed ultrasound beams radiated by rectangular focused diagnostic transducers.<br>Acoustical Physics, 2006, 52, 481-489.                                                                            | 0.2 | 45        |
| 96  | Parabolic equation for nonlinear acoustic wave propagation in inhomogeneous moving media.<br>Acoustical Physics, 2006, 52, 623-632.                                                                            | 0.2 | 41        |
| 97  | Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities. AIP Conference<br>Proceedings, 2006, , .                                                                                     | 0.3 | 1         |
| 98  | Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity<br>focused ultrasound in a gel phantom. Journal of the Acoustical Society of America, 2006, 119,<br>1834-1848. | 0.5 | 246       |
| 99  | Acoustic Nonlinearity in the Derating Problem for HIFU Sources. AIP Conference Proceedings, 2005, , .                                                                                                          | 0.3 | 0         |
| 100 | Nonlinear waveform distortion and shock formation in the near field of a continuous wave piston source. Journal of the Acoustical Society of America, 2004, 115, 1982-1987.                                    | 0.5 | 16        |
| 101 | Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.<br>Journal of the Acoustical Society of America, 2002, 112, 1183-1195.                                          | 0.5 | 141       |
| 102 | Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro.<br>Ultrasound in Medicine and Biology, 2001, 27, 695-708.                                                       | 0.7 | 128       |
| 103 | Acoustic hemostasis. AIP Conference Proceedings, 2000, , .                                                                                                                                                     | 0.3 | 1         |
| 104 | Analytical method for describing the paraxial region of finite amplitude sound beams. Journal of the<br>Acoustical Society of America, 1997, 101, 1298-1308.                                                   | 0.5 | 33        |