Yong-Gang Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633726/publications.pdf

Version: 2024-02-01

186254 276858 1,937 66 28 41 citations h-index g-index papers 66 66 66 864 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improvement of gel properties and digestibility of the water-soluble polymer of tea polyphenol-egg white under thermal treatment. Food Chemistry, 2022, 372, 131319.	8.2	32
2	Properties, digestion and peptide release of heat-induced duck egg white. LWT - Food Science and Technology, 2022, 154, 112788.	5.2	7
3	VFâ€4 and DRâ€8 Derived from Salted Egg White Inhibit Inflammatory Activity via NFâ€₽B/PI3Kâ€Akt/MAPK Signa Transduction Pathways in HTâ€29 Cells Induced by TNFâ€Î±. Molecular Nutrition and Food Research, 2022, 66, e2100682.	al 3.3	7
4	Isolation and screening of umami peptides from preserved egg yolk by nano-HPLC-MS/MS and molecular docking. Food Chemistry, 2022, 377, 131996.	8.2	26
5	Effects of partial replacement of NaCl by KCl and CaCl ₂ on physicochemical properties, microstructure, and textural properties of salted eggs. Journal of Food Science, 2022, 87, 795-807.	3.1	9
6	Study on the enhancement effect and mechanism of heat-induced gel strength of duck egg white by emulsified lipids. LWT - Food Science and Technology, 2022, 160, 113146.	5.2	11
7	Inhibition of the liquefaction of alkali-induced egg white gel by sodium ascorbate. Food Chemistry, 2022, 381, 132220.	8.2	10
8	Combined effects of NaOH, NaCl, and heat on the gel characteristics of duck egg white. LWT - Food Science and Technology, 2022, 159, 113178.	5.2	10
9	Study on the mechanism of enhanced gel strength of heat-induced egg white by shikimic acid braising. Poultry Science, 2022, 101, 101774.	3.4	3
10	Effects of Grafting Degree on the Physicochemical Properties of Egg White Protein-Sodium Carboxymethylcellulose Conjugates and Their Aerogels. Applied Sciences (Switzerland), 2022, 12, 2017.	2.5	3
11	Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 5-20.	5.2	21
12	Physicochemical properties and digestibility of thermally induced ovalbumin–oil emulsion gels: Effect of interfacial film type and oil droplets size. Food Hydrocolloids, 2022, 131, 107747.	10.7	30
13	Mechanism of the amelioration of the protein digestibility of whole marinated eggs by strong alkali pickling: Physicochemical properties, gel structure, and proteomics. Food Research International, 2022, 156, 111348.	6.2	5
14	Color, physicochemical characteristics and antioxidant activities of preserved egg white pickled at different temperatures. LWT - Food Science and Technology, 2022, 164, 113685.	5.2	5
15	Effects of tea and illicium verum braise on physicochemical characteristics, microstructure, and molecular structure of heat-induced egg white protein gel. Food Hydrocolloids, 2021, 110, 106181.	10.7	30
16	Effect of polysaccharides on the functional properties of egg white protein: A review. Journal of Food Science, 2021, 86, 656-666.	3.1	35
17	Effects of packaging methods on the quality of heavy metalsâ€"free preserved duck eggs during storage. Poultry Science, 2021, 100, 101051.	3.4	14
18	Changes in physicochemical and antioxidant properties of egg white during the Maillard reaction induced by alkali. LWT - Food Science and Technology, 2021, 143, 111151.	5.2	29

#	Article	IF	CITATIONS
19	Effects of salt and heat treatment on the physicochemical properties, microstructure, secondary structure, and simulated <i>in vitro</i> gastrointestinal digestion of duck egg white. Journal of the Science of Food and Agriculture, 2021, 101, 6093-6103.	3.5	6
20	Egg yolk oils exert anti-inflammatory effect via regulating Nrf2/NF-κB pathway. Journal of Ethnopharmacology, 2021, 274, 114070.	4.1	12
21	Effect of pH and xanthan gum on emulsifying property of ovalbumin stabilized oil-in water emulsions. LWT - Food Science and Technology, 2021, 147, 111621.	5.2	22
22	Changes in lipid properties of duck egg yolks under extreme processing conditions. Poultry Science, 2021, 100, 101140.	3.4	9
23	Characterization of duck egg white gel under the action of baijiu (Chinese liquor). LWT - Food Science and Technology, 2021, 147, 111487.	5.2	12
24	A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Research International, 2021, 147, 110563.	6.2	20
25	Effects of stewing with tea polyphenol on the gel properties, microstructure, and secondary structure of boiled egg white. Journal of Food Science, 2021, 86, 4262-4274.	3.1	7
26	Gelation behavior of egg yolk under physical and chemical induction: A review. Food Chemistry, 2021, 355, 129569.	8.2	25
27	Ovotransferrin exerts bidirectional immunomodulatory activities via TLR4â€mediated signal transduction pathways in RAW264.7 cells. Food Science and Nutrition, 2021, 9, 6162-6175.	3.4	5
28	The underlying mechanism of alkali-induced ovalbumin gel transforms to sol: Physicochemical properties, structure and quantitative protein degradation analysis. Food Hydrocolloids, 2021, 120, 106954.	10.7	14
29	Screening of characteristic umami substances in preserved egg yolk based on the electronic tongue and UHPLC-MS/MS. LWT - Food Science and Technology, 2021, 152, 112396.	5.2	33
30	Gelatin-Based Nanocomposite Film with Bacterial Cellulose–MgO Nanoparticles and Its Application in Packaging of Preserved Eggs. Coatings, 2021, 11, 39.	2.6	17
31	Mechanism of ultrasound and tea polyphenol assisted ultrasound modification of egg white protein gel. Ultrasonics Sonochemistry, 2021, 81, 105857.	8.2	39
32	Changes in physico-chemical properties, microstructures, molecular forces and gastric digestive properties of preserved egg white during pickling with the regulation of different metal compounds. Food Hydrocolloids, 2020, 98, 105281.	10.7	28
33	Alkali induced gelation behavior of low-density lipoprotein and high-density lipoprotein isolated from duck eggs. Food Chemistry, 2020, 311, 125952.	8.2	13
34	Effects of strong alkali treatment on the physicochemical properties, microstructure, protein structures, and intermolecular forces in egg yolks, plasma, and granules. Food Chemistry, 2020, 311, 125998.	8.2	34
35	Effects of temperature on quality of preserved eggs during storage. Poultry Science, 2020, 99, 3144-3157.	3.4	24
36	Changes in physicochemical properties, gel structure and in vitro digestion of marinated egg white gel during braising. Food Chemistry, 2020, 330, 127321.	8.2	37

#	Article	IF	Citations
37	Ethanol induced the gelation behavior of duck egg whites. Food Hydrocolloids, 2020, 105, 105765.	10.7	33
38	Biological Activities of Egg Yolk Lipids: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 1948-1957.	5.2	81
39	Effects of metal ions on the physico-chemical, microstructural and digestion characteristics of alkali-induced egg white gel. Food Hydrocolloids, 2020, 107, 105956.	10.7	52
40	The sol-gel-sol transformation behavior of egg white proteins induced by alkali. International Journal of Biological Macromolecules, 2020, 155, 588-597.	7.5	41
41	Relationship between protein structure changes and in vitro digestion of preserved egg white during pickling. International Journal of Biological Macromolecules, 2019, 138, 116-124.	7.5	46
42	Formation mechanism of low-density lipoprotein gel induced by NaCl. Poultry Science, 2019, 98, 5166-5176.	3.4	6
43	Changes in texture and molecular forces of heatedâ€induced egg white gel with adding xanthan gum. Journal of Food Process Engineering, 2019, 42, e13071.	2.9	25
44	Changes in physico-chemical properties, microstructure and intermolecular force of preserved egg yolk gels during pickling. Food Hydrocolloids, 2019, 89, 131-142.	10.7	58
45	Changes in physico-chemical properties, microstructure, protein structures and intermolecular force of egg yolk, plasma and granule gels during salting. Food Chemistry, 2019, 275, 600-609.	8.2	58
46	Isolation and identification of peptides from simulated gastrointestinal digestion of preserved egg white and their anti-inflammatory activity in TNF-α-induced Caco-2 cells. Journal of Nutritional Biochemistry, 2019, 63, 44-53.	4.2	42
47	Changes in aggregation behavior of raw and cooked salted egg yolks during pickling. Food Hydrocolloids, 2018, 80, 68-77.	10.7	64
48	Antiviral effect of ovotransferrin in mouse peritoneal macrophages by up-regulating type I interferon expression. Food and Agricultural Immunology, 2018, 29, 600-614.	1.4	6
49	The anti-inflammatory activity of peptides from simulated gastrointestinal digestion of preserved egg white in DSS-induced mouse colitis. Food and Function, 2018, 9, 6444-6454.	4.6	43
50	Ovotransferrin enhances intestinal immune response in cyclophosphamide-induced immunosuppressed mice. International Journal of Biological Macromolecules, 2018, 120, 1-9.	7.5	43
51	Anti-inflammatory activity of di-peptides derived from ovotransferrin by simulated peptide-cut in TNF-α-induced Caco-2 cells. Journal of Functional Foods, 2017, 37, 424-432.	3.4	33
52	Simulated gastrointestinal digest from preserved egg white exerts anti-inflammatory effects on Caco-2 cells and a mouse model of DSS-induced colitis. Journal of Functional Foods, 2017, 35, 655-665.	3.4	38
53	Effects of copper ions on the characteristics of egg white gel induced by strong alkali. Poultry Science, 2017, 96, 4116-4123.	3.4	29
54	Inorganic Elements in Preserved Egg. , 2017, , 427-434.		3

#	Article	IF	CITATIONS
55	Effects of salting treatment on the physicochemical properties, textural properties, and microstructures of duck eggs. PLoS ONE, 2017, 12, e0182912.	2.5	48
56	Formation mechanism of ovalbumin gel induced by alkali. Food Hydrocolloids, 2016, 61, 390-398.	10.7	99
57	Formation of lysinoalanine in egg white under alkali treatment. Poultry Science, 2016, 95, 660-667.	3.4	11
58	Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling. Food Chemistry, 2016, 203, 323-330.	8.2	88
59	Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs. Poultry Science, 2015, 94, 2272-2279.	3.4	5
60	Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocolloids, 2015, 45, 1-8.	10.7	85
61	Physicochemical and nutritional characteristics of preserved duck egg white. Poultry Science, 2014, 93, 3130-3137.	3.4	50
62	Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel. Poultry Science, 2014, 93, 2628-2635.	3.4	32
63	Effects of Sulfhydryl Compounds, Carbohydrates, Organic Acids, and Sodium Sulfite on the Formation of Lysinoalanine in Preserved Egg. Journal of Food Science, 2014, 79, T1621-8.	3.1	6
64	Simultaneous Determination of 20 Inorganic Elements in Preserved Egg Prepared with Different Metal Ions by ICP-AES. Food Analytical Methods, 2013, 6, 667-676.	2.6	40
65	Crystal structure of diaqua-bis-(2-ethyl-1H-imidazole-4,5-dicarboxylato- O,N)-cobalt(II) trihydrate, [Co(C6H4N2O4)2(H2O)2]·2(H2O)O, C14H22CoN4O13. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, 335-336.	0.3	1
66	Physicochemical characterisation and antioxidant activity of melanin from the muscles of Taihe Black-bone silky fowl (Gallus gallus domesticus Brisson). Food Chemistry, 2009, 114, 1345-1350.	8.2	127