Joel C Corbin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633438/publications.pdf

Version: 2024-02-01

LOFI C CODRIN

#	Article	IF	CITATIONS
1	Revising the hygroscopicity of inorganic sea salt particles. Nature Communications, 2017, 8, 15883.	5.8	173
2	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. Environmental Science & Technology, 2018, 52, 6825-6833.	4.6	149
3	Trace Metals in Soot and PM _{2.5} from Heavy-Fuel-Oil Combustion in a Marine Engine. Environmental Science & Technology, 2018, 52, 6714-6722.	4.6	112
4	Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition. Atmospheric Measurement Techniques, 2015, 8, 2315-2332.	1.2	110
5	Review of recent literature on the light absorption properties of black carbon: Refractive index, mass absorption cross section, and absorption function. Aerosol Science and Technology, 2020, 54, 33-51.	1.5	96
6	Cloud and Fog Processing Enhanced Gas-to-Particle Partitioning of Trimethylamine. Environmental Science & Technology, 2011, 45, 4346-4352.	4.6	93
7	Measurement of Aircraft Engine Non-Volatile PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 Campaign. Aerosol Science and Technology, 2015, 49, 472-484.	1.5	82
8	Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmospheric Chemistry and Physics, 2018, 18, 17843-17861.	1.9	77
9	Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	71
10	Brown and Black Carbon Emitted by a Marine Engine Operated on Heavy Fuel Oil and Distillate Fuels: Optical Properties, Size Distributions, and Emission Factors. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6175-6195.	1.2	62
11	Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions. Atmospheric Chemistry and Physics, 2014, 14, 2591-2603.	1.9	59
12	Observation of viscosity transition in <i>α</i> -pinene secondary organic aerosol. Atmospheric Chemistry and Physics, 2016, 16, 4423-4438.	1.9	55
13	Physicochemical characteristics of black carbon aerosol and its radiative impact in a polluted urban area of China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,505.	1.2	49
14	Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets. Atmospheric Chemistry and Physics, 2016, 16, 1693-1712.	1.9	47
15	Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles. Atmospheric Measurement Techniques, 2012, 5, 3099-3107.	1.2	43
16	Combustion particles as ice nuclei in an urban environment: Evidence from single-particle mass spectrometry. Atmospheric Environment, 2012, 51, 286-292.	1.9	42
17	Black Carbon Particles Do Not Matter for Immersion Mode Ice Nucleation. Geophysical Research Letters, 2020, 47, e2019GL086764.	1.5	37
18	Particle Emission Characteristics of a Gas Turbine with a Double Annular Combustor. Aerosol Science and Technology, 2015, 49, 842-855.	1.5	35

JOEL C CORBIN

#	Article	IF	CITATIONS
19	Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmospheric Chemistry and Physics, 2015, 15, 11885-11907.	1.9	34
20	Effective density and mass–mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size. Journal of Aerosol Science, 2015, 88, 135-147.	1.8	33
21	Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric Aging. Aerosol Science and Technology, 2015, 49, 1037-1050.	1.5	31
22	Brown Carbon in Primary and Aged Coal Combustion Emission. Environmental Science & Technology, 2021, 55, 5701-5710.	4.6	31
23	Elucidating determinants of aerosol composition through particle-type-based receptor modeling. Atmospheric Chemistry and Physics, 2011, 11, 8133-8155.	1.9	30
24	Characterization of particulate matter emitted by a marine engine operated with liquefied natural gas and diesel fuels. Atmospheric Environment, 2020, 220, 117030.	1.9	30
25	Investigations of SP-AMS Carbon Ion Distributions as a Function of Refractory Black Carbon Particle Type. Aerosol Science and Technology, 2015, 49, 409-422.	1.5	29
26	Comprehensive analysis of the air quality impacts of switching a marine vessel from diesel fuel to natural gas. Environmental Pollution, 2020, 266, 115404.	3.7	27
27	Morphology and size of soot from gas flares as a function of fuel and water addition. Fuel, 2020, 279, 118478.	3.4	27
28	Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580 m a.s.l.). Atmospheric Chemistry and Physics, 2019, 19, 3833-3855.	1.9	25
29	Characterization of black carbon particles generated by a propane-fueled miniature inverted soot generator. Journal of Aerosol Science, 2019, 135, 46-57.	1.8	25
30	A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC. Atmospheric Environment, 2011, 45, 6251-6256.	1.9	24
31	Size and morphology of soot produced by a dual-fuel marine engine. Journal of Aerosol Science, 2019, 138, 105448.	1.8	23
32	Characterization and Reduction of In-Use CH ₄ Emissions from a Dual Fuel Marine Engine Using Wavelength Modulation Spectroscopy. Environmental Science & Technology, 2019, 53, 2892-2899.	4.6	23
33	Detection of tar brown carbon with a single particle soot photometer (SP2). Atmospheric Chemistry and Physics, 2019, 19, 15673-15690.	1.9	22
34	Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: effects of mass accuracy on location-constrained fits. Atmospheric Measurement Techniques, 2015, 8, 4615-4636.	1.2	20
35	Characterization of few-layer graphene aerosols by laser-induced incandescence. Carbon, 2020, 167, 870-880.	5.4	20
36	Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method. Atmospheric Measurement Techniques, 2021, 14, 819-851.	1.2	20

JOEL C CORBIN

#	Article	IF	CITATIONS
37	Typical and Atypical Morphology of Non-volatile Particles from a Diesel and Natural Gas Marine Engine. Aerosol and Air Quality Research, 2020, 20, 730-740.	0.9	20
38	Comparison of co-located refractory black carbon (rBC) and elemental carbon (EC) mass concentration measurements during field campaigns at several European sites. Atmospheric Measurement Techniques, 2021, 14, 1379-1403.	1.2	19
39	Droplet activation behaviour of atmospheric black carbon particles in fog as a function of their size and mixing state. Atmospheric Chemistry and Physics, 2019, 19, 2183-2207.	1.9	17
40	Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements. Atmospheric Chemistry and Physics, 2021, 21, 12809-12833.	1.9	15
41	Identification of secondary aerosol precursors emitted by an aircraft turbofan. Atmospheric Chemistry and Physics, 2018, 18, 7379-7391.	1.9	14
42	Closure between particulate matter concentrations measured ex situ by thermal–optical analysis and in situ by the CPMA–electrometer reference mass system. Aerosol Science and Technology, 2020, 54, 1293-1309.	1.5	13
43	Effective density and metals content of particle emissions generated by a diesel engine operating under different marine fuels. Journal of Aerosol Science, 2021, 151, 105651.	1.8	12
44	Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks. Scientific Reports, 2021, 11, 21979.	1.6	12
45	PM0.1 particles from aircraft may increase risk of vascular disease. BMJ, The, 2013, 347, f6783-f6783.	3.0	11
46	Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: comparison of measurement techniques for mass, number, and size. Atmospheric Measurement Techniques, 2022, 15, 3223-3242.	1.2	10
47	Black Carbon Aerosols in the Lower Free Troposphere are Heavily Coated in Summer but Largely Uncoated in Winter at Jungfraujoch in the Swiss Alps. Geophysical Research Letters, 2020, 47, e2020GL088011.	1.5	9
48	Crumpled few-layer graphene: Connection between morphology and optical properties. Carbon, 2021, 182, 677-690.	5.4	9
49	Size-dependent mass absorption cross-section of soot particles from various sources. Carbon, 2022, 192, 438-451.	5.4	9
50	Ash-Decorated and Ash-Painted Soot from Residual and Distillate-Fuel Combustion in Four Marine Engines and One Aviation Engine. Environmental Science & Technology, 2021, 55, 6584-6593.	4.6	8
51	Multiphoton induced photoluminescence during time-resolved laser-induced incandescence experiments on silver and gold nanoparticles. Journal of Applied Physics, 2021, 129, .	1.1	8
52	Using two-dimensional distributions to inform the mixing state of soot and salt particles produced in gas flares. Journal of Aerosol Science, 2021, 158, 105826.	1.8	8
53	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	1.9	7
54	Particulate emissions from turbulent diffusion flames with entrained droplets: A laboratory simulation of gas flaring emissions. Journal of Aerosol Science, 2021, 157, 105807.	1.8	7

JOEL C CORBIN

#	Article	IF	CITATIONS
55	Measurement report: Comparison of airborne, in situ measured, lidar-based, and modeled aerosol optical properties in the central European background – identifying sources of deviations. Atmospheric Chemistry and Physics, 2021, 21, 16745-16773.	1.9	7
56	Repeatability and intermediate precision of a mass concentration calibration system. Aerosol Science and Technology, 2019, 53, 701-711.	1.5	6
57	Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus. EPJ Web of Conferences, 2018, 176, 08005.	0.1	5
58	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	3.9	3
59	Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation. , 0, , .		1