
Zuzanna Magdziak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Content of Phenolic Compounds and Organic Acids in Two Tagetes patula Cultivars Flowers and Its Dependence on Light Colour and Substrate. Molecules, 2022, 27, 527.	3.8	5
2	Biofortification of Three Cultivated Mushroom Species with Three Iron Salts—Potential for a New Iron-Rich Superfood. Molecules, 2022, 27, 2328.	3.8	1
3	Arsenic uptake, speciation and physiological response of tree species (Acer pseudoplatanus, Betula) Tj ETQq1 1 0.	784314 rg 8.2	gBT /Overloc
4	Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. Chemosphere, 2021, 263, 128095.	8.2	28
5	The influence of environmental condition on the creation of organic compounds in Pinus sylvestris L. rhizosphere, roots and needles. Trees - Structure and Function, 2021, 35, 441-457.	1.9	4
6	Mineral composition of elements in wood-growing mushroom species collected from of two regions of Poland. Environmental Science and Pollution Research, 2021, 28, 4430-4442.	5.3	6
7	The importance of Cu ×  Pb interactions to Lentinula edodes yield, major/trace elements accumulation and antioxidants. European Food Research and Technology, 2021, 247, 2799-2812.	3.3	1
8	The Possibility of Using Paulownia elongata S. Y. Hu × Paulownia fortunei Hybrid for Phytoextraction of Toxic Elements from Post-Industrial Wastes with Biochar. Plants, 2021, 10, 2049.	3.5	5
9	Influence of Iron Addition (Alone or with Calcium) to Elements Biofortification and Antioxidants in Pholiota nameko. Plants, 2021, 10, 2275.	3.5	5
10	A Possibility to Use Selected Crop Post-Extraction Wastes to Improve the Composition of Cultivated Mushroom Pleurotus citrinopileatus. Journal of Fungi (Basel, Switzerland), 2021, 7, 894.	3.5	3
11	Worldwide basket survey of multielemental composition of white button mushroom Agaricus bisporus. Chemosphere, 2020, 239, 124718.	8.2	21
12	The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers Journal of Food Science and Technology, 2020, 57, 513-525.	2.8	42
13	Content of Phenolic Compounds and Organic Acids in the Flowers of Selected Tulipa gesneriana Cultivars. Molecules, 2020, 25, 5627.	3.8	9
14	Multiannual monitoring (1974–2019) of rare earth elements in wild growing edible mushroom species in Polish forests. Chemosphere, 2020, 257, 127173.	8.2	11
15	Effect of <i>Thymus vulgaris</i> postâ€extraction waste and spent coffee grounds on the quality of cultivated <i>Pleurotus eryngii</i> . Journal of Food Processing and Preservation, 2020, 44, e14648.	2.0	8
16	Profile and concentration of the low molecular weight organic acids and phenolic compounds created by two-year-old Acer platanoides seedlings growing under different As forms. Journal of Hazardous Materials, 2020, 392, 122280.	12.4	11
17	Differences of Acer platanoides L. and Tilia cordata Mill. Response patterns/survival strategies during cultivation in extremely polluted mining sludge – A pot trial. Chemosphere, 2019, 229, 589-601.	8.2	13
18	The Effect of Mushroom Extracts on Human Platelet and Blood Coagulation: In vitro Screening of Eight Edible Species. Nutrients, 2019, 11, 3040.	4.1	23

#	Article	IF	CITATIONS
19	Organic acid profile and phenolic and sugar content in <i>Salix purpurea × viminalis</i> L.Âcultivated with different spent mushroom substrate and copper additions. Chemistry and Ecology, 2019, 35, 191-203.	1.6	1
20	Differentiation in low molecular weight organic acids exudation into rhizosphere and their creation in Ulmus laevis Pall organs treated by As – pot experiment. Chemistry and Ecology, 2019, 35, 36-53.	1.6	5
21	Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. Journal of Plant Physiology, 2018, 220, 34-42.	3.5	25
22	Profile of phenolic and organic acids, antioxidant properties and ergosterol content in cultivated and wild growing species of Agaricus. European Food Research and Technology, 2018, 244, 259-268.	3.3	53
23	Dendroremediation: The Role of Trees in Phytoextraction of Trace Elements. , 2018, , 267-295.		6
24	The importance of substrate compaction and chemical composition in the phytoextraction of elements by <i>Pinus sylvestris</i> L. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 1029-1038.	1.7	6
25	Arsenic forms in phytoextraction of this metalloid in organs of 2-year-old Acer platanoides seedlings. Environmental Science and Pollution Research, 2018, 25, 27260-27273.	5.3	16
26	Salix viminalis L A highly effective plant in phytoextraction of elements. Chemosphere, 2018, 212, 67-78.	8.2	34
27	The relationship between metal composition, phenolic acid and flavonoid content in <i>Imleria badia</i> from non-polluted and polluted areas. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 171-177.	1.5	21
28	Copper and nickel co-treatment alters metal uptake and stress parameters of Salix purpurea × viminalis. Journal of Plant Physiology, 2017, 216, 125-134.	3.5	26
29	Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environmental Science and Pollution Research, 2017, 24, 22183-22195.	5.3	39
30	Characteristics of organic acid profiles in 16 species of wild growing edible mushrooms. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2017, 52, 784-789.	1.5	8
31	Content of selected elements and low-molecular-weight organic acids in fruiting bodies of edible mushroom Boletus badius (Fr.) Fr. from unpolluted and polluted areas. Environmental Science and Pollution Research, 2016, 23, 20609-20618.	5.3	43
32	Photosynthetic activity in relation to chlorophylls, carbohydrates, phenolics and growth of a hybrid Salix purpureaÂ×ÂtriandraÂ×Âviminalis 2 at various Zn concentrations. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	25
33	Efficiency of Zn phytoextraction, biomass yield and formation of low-molecular-weight organic acids in <i>S</i> A— <i>rubens</i> – a hydroponic experiment. Chemistry and Ecology, 2015, 31, 345-364.	1.6	19
34	Phytoremediation and Environmental Factors. , 2015, , 45-55.		8
35	Copper phytoextraction with Salix purpureaÂ×Âviminalis under various Ca/Mg ratios. Part 2. Effect on organic acid, phenolics and salicylic acid contents. Acta Physiologiae Plantarum, 2014, 36, 903-913.	2.1	18
36	Influence of Ca/Mg ratio and Cd2+ and Pb2+ elements on low molecular weight organic acid secretion by Salix viminalis L. roots into the rhizosphere. Trees - Structure and Function, 2013, 27, 663-673.	1.9	14

#	Article	IF	CITATIONS
37	Copper phytoextraction with willow (Salix viminalis L.) under various Ca/Mg ratios. Part 1. Copper accumulation and plant morphology changes. Acta Physiologiae Plantarum, 2013, 35, 3251-3259.	2.1	14
38	Accumulation of elements by edible mushroom species II. A comparison of aluminium, barium and nutritional element contents. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2013, 48, 308-317.	1.5	12
39	Physiological and morphological changes inSalix viminalisL. as a result of plant exposure to copper. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 548-557.	1.7	21
40	Changes in Salix viminalis L. cv. â€~Cannabina' morphology and physiology in response to nickel ions – Hydroponic investigations. Journal of Hazardous Materials, 2012, 217-218, 429-438.	12.4	49
41	Hydroponic estimation of heavy metal accumulation by different genotypes of <i>Salix</i> . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 569-578.	1.7	18
42	Hydroponical estimation of interactions among selected heavy metals accumulated bySalix viminalisin phytoremediation process. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1353-1362.	1.7	3
43	Effect of different soil conditions on selected heavy metal accumulation by <i>Salix viminalis</i> tissues. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 1609-1616.	1.7	21