
Thierry Aussenac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633245/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in SDS Solubility of Glutenin Polymers During Dough Mixing and Resting. Cereal Chemistry, 2001, 78, 39-45.	2.2	66
2	Biological control of septoria leaf blotch and growth promotion in wheat by Paenibacillus sp. strain B2 and Curtobacterium plantarum strain EDS. Biological Control, 2017, 114, 87-96.	3.0	50
3	Ozone Treatments for Preserving Fresh Vegetables Quality: A Critical Review. Foods, 2021, 10, 605.	4.3	43
4	Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. Journal of Experimental Botany, 2006, 57, 2165-2172.	4.8	41
5	Starch characterization after ozone treatment of wheat grains. Journal of Cereal Science, 2016, 70, 207-213.	3.7	40
6	Changes in the glutathione thiol–disulfide status during wheat grain development. Plant Physiology and Biochemistry, 2003, 41, 895-902.	5.8	37
7	Effects of ozone treatment on the molecular properties of wheat grain proteins. Journal of Cereal Science, 2017, 75, 243-251.	3.7	36
8	The Effect of Plant Genotype, Growth Stage, and Mycosphaerella graminicola Strains on the Efficiency and Durability of Wheat-Induced Resistance by Paenibacillus sp. Strain B2. Frontiers in Plant Science, 2019, 10, 587.	3.6	31
9	Application of Ozone Treatment for the Decolorization of the Reactive-Dyed Fabrics in a Pilot-Scale Process—Optimization through Response Surface Methodology. Sustainability, 2020, 12, 471.	3.2	16
10	Homology modeling and molecular dynamics simulations of the N-terminal domain of wheat high molecular weight glutenin subunit 10. Protein Science, 2003, 12, 34-43.	7.6	14
11	PARAFAC analysis of front-face fluorescence data: Absorption and scattering effects assessed by means of Monte Carlo simulations. Chemometrics and Intelligent Laboratory Systems, 2012, 116, 112-122.	3.5	13
12	Chronic ingestion of a potential food contaminant induces gastrointestinal inflammation in rats: role of nitric oxide and mast cells. Digestive Diseases and Sciences, 2000, 45, 1842-1849.	2.3	12
13	Genetic and Environmental Factors Associated to Glutenin Polymer Characteristics of Wheat. Foods, 2020, 9, 683.	4.3	11
14	Molecular characterization of storage proteins for selected durum wheat varieties grown in different environments. Journal of Cereal Science, 2015, 61, 97-104.	3.7	9
15	Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods, 2020, 9, 1675.	4.3	9
16	Genetic and Environmental Variation in Starch Content, Starch Granule Distribution and Starch Polymer Molecular Characteristics of French Bread Wheat. Foods, 2021, 10, 205.	4.3	9
17	Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress. Physiological and Molecular Plant Pathology, 2022, 119, 101830.	2.5	9
18	Environmental Profile Study of Ozone Decolorization of Reactive Dyed Cotton Textiles by Utilizing Life Cycle Assessment. Sustainability, 2021, 13, 1225.	3.2	8

THIERRY AUSSENAC

#	Article	IF	CITATIONS
19	Bread wheat quality under limiting environmental conditions: II – Rheological properties of Lebanese wheat genotypes. Journal of the Saudi Society of Agricultural Sciences, 2021, 20, 235-242.	1.9	6
20	Resolution of Fluorophore Mixtures in Biological Media Using Fluorescence Spectroscopy and Monte Carlo Simulation. Applied Spectroscopy, 2014, 68, 697-711.	2.2	5
21	SDS-insoluble glutenin polymer formation in developing grains of hexaploid wheat: the role of the ratio of high to low molecular weight glutenin subunits and drying rate during ripening. Functional Plant Biology, 2001, 28, 193.	2.1	3
22	Molecular characterization of three transgenic high molecular weight glutenin subunit events in winter wheat. Journal of Cereal Science, 2014, 60, 631-638.	3.7	2
23	Bread Wheat Quality under Limiting Environmental Conditions: I-Molecular Properties of Storage Proteins and Starch Constituents in Mature Grains. Agriculture (Switzerland), 2021, 11, 289.	3.1	2