
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3633017/publications.pdf Version: 2024-02-01

REN-KELI

#	Article	IF	CITATIONS
1	A Self-Fulfilling Prophecy. Circulation, 2002, 106, 913-919.	1.6	924
2	Resistin Promotes Endothelial Cell Activation. Circulation, 2003, 108, 736-740.	1.6	601
3	Endothelin Antagonism and Interleukin-6 Inhibition Attenuate the Proatherogenic Effects of C-Reactive Protein. Circulation, 2002, 105, 1890-1896.	1.6	559
4	C-Reactive Protein Upregulates Angiotensin Type 1 Receptors in Vascular Smooth Muscle. Circulation, 2003, 107, 1783-1790.	1.6	492
5	Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 2006, 116, 1865-1877.	3.9	468
6	Bcl-2 Engineered MSCs Inhibited Apoptosis and Improved Heart Function. Stem Cells, 2007, 25, 2118-2127.	1.4	410
7	Fundamentals of Reperfusion Injury for the Clinical Cardiologist. Circulation, 2002, 105, 2332-2336.	1.6	367
8	Cardiomyocyte Transplantation Improves Heart Function. Annals of Thoracic Surgery, 1996, 62, 654-661.	0.7	360
9	Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1132-1140.	0.4	335
10	Differentiation of Allogeneic Mesenchymal Stem Cells Induces Immunogenicity and Limits Their Long-Term Benefits for Myocardial Repair. Circulation, 2010, 122, 2419-2429.	1.6	330
11	A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair. Theranostics, 2017, 7, 3842-3855.	4.6	297
12	Flexible shape-memory scaffold for minimally invasive delivery of functional tissues. Nature Materials, 2017, 16, 1038-1046.	13.3	295
13	ls the intravascular administration of mesenchymal stem cells safe?. Microvascular Research, 2009, 77, 370-376.	1.1	285
14	Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials, 2013, 34, 1063-1072.	5.7	228
15	The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials, 2014, 35, 2798-2808.	5.7	222
16	Smooth Muscle Cell Transplantation into Myocardial Scar Tissue Improves Heart Function. Journal of Molecular and Cellular Cardiology, 1999, 31, 513-522.	0.9	221
17	Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials, 2011, 32, 1280-1290.	5.7	211
18	Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate the Infarcted Pig Heart but Induce Ventricular Tachyarrhythmias. Stem Cell Reports, 2019, 12, 967-981.	2.3	207

#	Article	IF	CITATIONS
19	A Glucagon-Like Peptide-1 Analog Reverses the Molecular Pathology and Cardiac Dysfunction of a Mouse Model of Obesity. Circulation, 2013, 127, 74-85.	1.6	199
20	A Conductive Polymer Hydrogel Supports Cell Electrical Signaling and Improves Cardiac Function After Implantation into Myocardial Infarct. Circulation, 2015, 132, 772-784.	1.6	199
21	Construction of a bioengineered cardiac graft. Journal of Thoracic and Cardiovascular Surgery, 2000, 119, 368-375.	0.4	198
22	Overexpression of Transforming Growth Factor-β1 and Insulin-Like Growth Factor-I in Patients With Idiopathic Hypertrophic Cardiomyopathy. Circulation, 1997, 96, 874-881.	1.6	185
23	TIMP-3 Deficiency Leads to Dilated Cardiomyopathy. Circulation, 2004, 110, 2401-2409.	1.6	154
24	Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. Journal of Thoracic and Cardiovascular Surgery, 2000, 119, 62-68.	0.4	153
25	Generation of the epicardial lineage from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 1026-1035.	9.4	152
26	Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials, 2011, 32, 579-586.	5.7	151
27	Rosiglitazone Facilitates Angiogenic Progenitor Cell Differentiation Toward Endothelial Lineage. Circulation, 2004, 109, 1392-1400.	1.6	148
28	Fetal cell transplantation: A comparison of three cell types. Journal of Thoracic and Cardiovascular Surgery, 1999, 118, 715-725.	0.4	147
29	Mueller matrix decomposition for polarized light assessment of biological tissues. Journal of Biophotonics, 2009, 2, 145-156.	1.1	145
30	Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Annals of Thoracic Surgery, 2001, 72, 1957-1963.	0.7	138
31	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 1-11.	0.7	135
32	Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 2002, 106, 1137-42.	1.6	135
33	Intravenously Administered Bone Marrow Cells Migrate to Damaged Brain Tissue and Improve Neural Function in Ischemic Rats. Cell Transplantation, 2007, 16, 993-1005.	1.2	125
34	Cell Transplantation Improves Ventricular Function After a Myocardial Infarction. Circulation, 2005, 112, 196-104.	1.6	124
35	The Effect of Age on the Efficacy of Human Mesenchymal Stem Cell Transplantation after a Myocardial Infarction. Rejuvenation Research, 2010, 13, 429-438.	0.9	123
36	Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2089-H2096.	1.5	119

#	Article	IF	CITATIONS
37	Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics, 2018, 8, 2752-2764.	4.6	119
38	The cytoprotective effect of Trolox demonstrated with three types of human cells. Biochemistry and Cell Biology, 1990, 68, 1189-1194.	0.9	116
39	In Vivo Survival and Function of Transplanted Rat Cardiomyocytes. Circulation Research, 1996, 78, 283-288.	2.0	116
40	Mechanical Stretch Regimen Enhances the Formation of Bioengineered Autologous Cardiac Muscle Grafts. Circulation, 2002, 106, .	1.6	115
41	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 49-60.	0.7	112
42	Ultrasound-Targeted Gene Delivery Induces Angiogenesis After a Myocardial Infarction in Mice. JACC: Cardiovascular Imaging, 2009, 2, 869-879.	2.3	111
43	Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. European Heart Journal, 2011, 32, 2075-2084.	1.0	109
44	The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 932-942.	0.4	105
45	Myocardial salvage with trolox and ascorbic acid for an acute evolving infarction. Annals of Thoracic Surgery, 1989, 47, 553-557.	0.7	104
46	Enhanced Myocardial Angiogenesis by Gene Transfer With Transplanted Cells. Circulation, 2001, 104, I-218-I-222.	1.6	103
47	Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovascular Research, 2006, 69, 716-725.	1.8	101
48	Tracking cardiac engraftment and distribution of implanted bone marrow cells: Comparing intra-aortic, intravenous, and intramyocardial delivery. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 1225-1233.e1.	0.4	101
49	Altered Expression of Disintegrin Metalloproteinases and Their Inhibitor in Human Dilated Cardiomyopathy. Circulation, 2006, 113, 238-245.	1.6	99
50	Autologous heart cell transplantation improves cardiac function after myocardial injury. Annals of Thoracic Surgery, 1999, 68, 2074-2080.	0.7	97
51	Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Annals of Thoracic Surgery, 2000, 70, 859-865.	0.7	92
52	Leptin Increases Cardiomyocyte Hyperplasia via Extracellular Signal-Regulated Kinase- and Phosphatidylinositol 3-Kinase-Dependent Signaling Pathways. Endocrinology, 2004, 145, 1550-1555.	1.4	91
53	Phenotypic switching of vascular smooth muscle cells in the â€~normal region' of aorta from atherosclerosis patients is regulated by <i>miR″45</i> . Journal of Cellular and Molecular Medicine, 2016, 20, 1049-1061.	1.6	91
54	Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H626-H634.	1.5	90

#	Article	IF	CITATIONS
55	Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. Journal of Thoracic and Cardiovascular Surgery, 1992, 104, 159-164.	0.4	88
56	Microsomal Prostaglandin E ₂ Synthase-1 Deletion Leads to Adverse Left Ventricular Remodeling After Myocardial Infarction. Circulation, 2008, 117, 1701-1710.	1.6	88
57	Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: Combined consequences for cell therapy inAolder recipients. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 1286-1294.e2.	0.4	88
58	Role of miR-145 in cardiac myofibroblast differentiation. Journal of Molecular and Cellular Cardiology, 2014, 66, 94-105.	0.9	86
59	Cell transplantation preserves cardiac function after infarction by infarct stabilization: Augmentation by stem cell factor. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1310.e1-1310.e10.	0.4	84
60	C-reactive protein activates the nuclear factor-κB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1886-1891.	0.4	83
61	A self-doping conductive polymer hydrogel that can restore electrical impulse propagation at myocardial infarct to prevent cardiac arrhythmia and preserve ventricular function. Biomaterials, 2020, 231, 119672.	5.7	82
62	A Transformed Cell Population Derived from Cultured Mesenchymal Stem Cells has no Functional Effect after Transplantation into the Injured Heart. Cell Transplantation, 2009, 18, 319-332.	1.2	80
63	Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. Journal of Biomedical Optics, 2010, 15, 047009.	1.4	80
64	Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 1157-1164.	0.4	79
65	C-Reactive Protein Upregulates Complement-Inhibitory Factors in Endothelial Cells. Circulation, 2004, 109, 833-836.	1.6	78
66	Angiogenesis by endothelial cell transplantation. Journal of Thoracic and Cardiovascular Surgery, 2001, 122, 963-971.	0.4	75
67	Autologous Transplantation of Bone Marrow Cells Improves Damaged Heart Function. Circulation, 1999, 100, .	1.6	75
68	Application of Biomaterials in Cardiac Repair and Regeneration. Engineering, 2016, 2, 141-148.	3.2	74
69	Stem Cell Factor Deficiency Is Vasculoprotective. Circulation Research, 2006, 99, 617-625.	2.0	73
70	Intracardiac injection of matrigel induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. Journal of Cellular and Molecular Medicine, 2011, 15, 1310-1318.	1.6	72
71	Cellular senescence contributes to ageâ€dependent changes in circulating extracellular vesicle cargo and function. Aging Cell, 2020, 19, e13103.	3.0	72
72	Improved Left Ventricular Aneurysm Repair With Bioengineered Vascular Smooth Muscle Grafts. Circulation, 2003, 108, 219II225.	1.6	71

#	Article	IF	CITATIONS
73	Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 69-84.	1.3	71
74	The use of cationic microbubbles to improve ultrasound-targeted gene delivery to the ischemic myocardium. Biomaterials, 2013, 34, 2107-2116.	5.7	70
75	Targeted myocardial delivery of GDF11 gene rejuvenates the aged mouse heart and enhances myocardial regeneration after ischemia–reperfusion injury. Basic Research in Cardiology, 2017, 112, 7.	2.5	70
76	Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. Annals of Thoracic Surgery, 2003, 75, 169-177.	0.7	67
77	Increasing Transplanted Cell Survival With Cell-Based Angiogenic Gene Therapy. Annals of Thoracic Surgery, 2005, 80, 1779-1786.	0.7	67
78	Culture of rat endometrial telocytes. Journal of Cellular and Molecular Medicine, 2012, 16, 1392-1396.	1.6	67
79	Optimal biomaterial for creation of autologous cardiac grafts. Circulation, 2002, 106, 1176-82.	1.6	67
80	Quantitative analysis of survival of transplanted smooth muscle cells with real-time polymerase chain reaction. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 904-911.	0.4	66
81	Enhanced thoracic gene delivery by magnetic nanobeadâ€mediated vector. Journal of Gene Medicine, 2008, 10, 897-909.	1.4	66
82	Activation of câ€kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury. FASEB Journal, 2008, 22, 930-940.	0.2	66
83	Preserving Prostaglandin E2 Level Prevents Rejection of Implanted Allogeneic Mesenchymal Stem Cells and Restores Postinfarction Ventricular Function. Circulation, 2013, 128, S69-78.	1.6	66
84	Maximizing Ventricular Function With Multimodal Cell-Based Gene Therapy. Circulation, 2005, 112, 1123-8.	1.6	66
85	Optimal Biomaterial for Creation of Autologous Cardiac Grafts. Circulation, 2002, 106, .	1.6	65
86	Hyperglycemia exaggerates ischemia-reperfusion–induced cardiomyocyte injury: Reversal with endothelin antagonism. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1120-1124.	0.4	64
87	Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. Journal of Cellular and Molecular Medicine, 2009, 13, 664-679.	1.6	62
88	Stem cells and regenerative medicine— future perspectives. Canadian Journal of Physiology and Pharmacology, 2012, 90, 327-335.	0.7	62
89	c-Kit Dysfunction Impairs Myocardial Healing After Infarction. Circulation, 2007, 116, 177-82.	1.6	60
90	Polyethylenimine-mediated gene delivery into human bone marrow mesenchymal stem cells from patients. Journal of Cellular and Molecular Medicine, 2011, 15, 1989-1998.	1.6	59

#	Article	IF	CITATIONS
91	Human pediatric and adult ventricular cardiomyocytes in culture: assessment of phenotypic changes with passaging. Cardiovascular Research, 1996, 32, 362-373.	1.8	58
92	VEGF-loaded microsphere patch for local protein delivery to the ischemic heart. Acta Biomaterialia, 2016, 45, 169-181.	4.1	58
93	Insulin stimulates pyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. Journal of Thoracic and Cardiovascular Surgery, 1998, 116, 485-494.	0.4	57
94	Skeletal Myoblasts Preserve Remote Matrix Architecture and Global Function When Implanted Early or Late After Coronary Ligation Into Infarcted or Remote Myocardium. Circulation, 2008, 118, S130-S137.	1.6	57
95	Stem Cell Factor Attenuates Vascular Smooth Muscle Apoptosis and Increases Intimal Hyperplasia After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 540-547.	1.1	56
96	Transplanted microvessels improve pluripotent stem cell–derived cardiomyocyte engraftment and cardiac function after infarction in rats. Science Translational Medicine, 2020, 12, .	5.8	56
97	Elastin Stabilizes an Infarct and Preserves Ventricular Function. Circulation, 2005, 112, 181-8.	1.6	56
98	Cell transplantation to prevent heart failure: a comparison of cell types. Annals of Thoracic Surgery, 2003, 76, 2062-2070.	0.7	55
99	TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2007, 43, 733-743.	0.9	55
100	Dedifferentiated Human Ventricular Cardiac Myocytes Express Inducible Nitric Oxide Synthase mRNA But Not Protein in Response to IL-1, TNF, IFNγ, and LPS. Journal of Molecular and Cellular Cardiology, 1997, 29, 1153-1165.	0.9	52
101	Reconstitution of aged bone marrow with young cells repopulates cardiac-resident bone marrow-derived progenitor cells and prevents cardiac dysfunction after a myocardial infarction. European Heart Journal, 2013, 34, 1157-1167.	1.0	51
102	A conductive cell-delivery construct as a bioengineered patch that can improve electrical propagation and synchronize cardiomyocyte contraction for heart repair. Journal of Controlled Release, 2020, 320, 73-82.	4.8	51
103	Hyperglycemia potentiates the proatherogenic effects of C-reactive protein: reversal with rosiglitazone. Journal of Molecular and Cellular Cardiology, 2003, 35, 417-419.	0.9	50
104	Human CMV immediateâ€early enhancer: a useful tool to enhance cellâ€ŧypeâ€specific expression from lentiviral vectors. Journal of Gene Medicine, 2008, 10, 21-32.	1.4	50
105	Vascular endothelial growth factor transgene expression in cell-transplanted hearts. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 1180-1187.	0.4	49
106	Cell transplantation preserves matrix homeostasis: A novel paracrine mechanism. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 1430-1439.	0.4	49
107	Progressive Aortic Dilation Is Regulated byÂmiR-17–Associated miRNAs. Journal of the American College of Cardiology, 2016, 67, 2965-2977.	1.2	49
108	Novel cardioprotective effects of tetrahydrobiopterin after anoxia and reoxygenation: Identifying cellular targets for pharmacologic manipulation. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1074-1083.	0.4	48

#	Article	IF	CITATIONS
109	Surgical ventricular restoration with a cell- and cytokine-seeded biodegradable scaffold. Biomaterials, 2010, 31, 7684-7694.	5.7	48
110	Decreased <scp>SIRT</scp> 3 in aged human mesenchymal stromal/stem cells increases cellular susceptibility to oxidative stress. Journal of Cellular and Molecular Medicine, 2014, 18, 2298-2310.	1.6	48
111	Cardioprotective Signature of Short-Term Caloric Restriction. PLoS ONE, 2015, 10, e0130658.	1.1	47
112	Enhanced IGF-1 expression improves smooth muscle cell engraftment after cell transplantation. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2840-H2849.	1.5	46
113	Genetic Modification of Embryonic Stem Cells with VEGF Enhances Cell Survival and Improves Cardiac Function. Cloning and Stem Cells, 2007, 9, 549-563.	2.6	45
114	The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 2020, 258, 120285.	5.7	45
115	Enhanced cell transplantation: preventing apoptosis increases cell survival and ventricular function. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H939-H947.	1.5	44
116	Overexpression of elastin fragments in infarcted myocardium attenuates scar expansion and heart dysfunction. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2819-H2827.	1.5	43
117	The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium, enhance Timp3 gene transfection and improve cardiac function. Biomaterials, 2014, 35, 1063-1073.	5.7	43
118	Enhanced Angiogenesis With Multimodal Cell-Based Gene Therapy. Annals of Thoracic Surgery, 2007, 83, 1110-1119.	0.7	42
119	Aged Human Cells Rejuvenated by Cytokine Enhancement of Biomaterials for Surgical Ventricular Restoration. Journal of the American College of Cardiology, 2012, 60, 2237-2249.	1.2	41
120	Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy. European Heart Journal, 2015, 36, 2530-2540.	1.0	41
121	Increased endothelin-1 production in diabetic patients after cardioplegic arrest and reperfusion impairs coronary vascular reactivity: Reversal by means of endothelin antagonism. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 1114-1119.	0.4	40
122	Hypoxic/Normoxic Preconditioning Increases Endothelial Differentiation Potential of Human Bone Marrow CD133+ Cells. Tissue Engineering - Part C: Methods, 2010, 16, 1069-1081.	1.1	40
123	Suppression of miR-34a Expression in the Myocardium Protects Against Ischemia–Reperfusion Injury Through SIRT1 Protective Pathway. Stem Cells and Development, 2017, 26, 1270-1282.	1.1	40
124	Prolonged hypothermic cardiac storage with University of Wisconsin solution. Journal of Thoracic and Cardiovascular Surgery, 1991, 102, 666-672.	0.4	39
125	Interleukinâ€6 downregulation with mesenchymal stem cell differentiation results in loss of immunoprivilege. Journal of Cellular and Molecular Medicine, 2013, 17, 1136-1145.	1.6	39
126	Hydrogels With Integrin-Binding Angiopoietin-1–Derived Peptide, QHREDGS, for Treatment of Acute Myocardial Infarction. Circulation: Heart Failure, 2015, 8, 333-341.	1.6	39

#	Article	IF	CITATIONS
127	Bioactive coating of decellularized vascular grafts with a temperature-sensitive VEGF-conjugated hydrogel accelerates autologous endothelialization <i>in vivo</i> . Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e513-e522.	1.3	39
128	Survival and Function of Bioengineered Cardiac Grafts. Circulation, 1999, 100, .	1.6	39
129	Preconditioning human cardiomyocytes and endothelial cells. Journal of Thoracic and Cardiovascular Surgery, 1998, 115, 210-219.	0.4	38
130	Cardiac remodeling and failure. Cardiovascular Pathology, 2005, 14, 109-119.	0.7	38
131	Improvement in cardiac function after bone marrow cell thearpy is associated with an increase in myocardial inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H43-H50.	1.5	38
132	Regional overexpression of insulin-like growth factor-I and transforming growth factor-β1 in the myocardium of patients with hypertrophic obstructive cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 89-95.	0.4	37
133	Co-culture with cardiomyocytes enhanced the myogenic conversion of mesenchymal stromal cells in a dose-dependent manner. Molecular and Cellular Biochemistry, 2010, 339, 89-98.	1.4	37
134	Role of WNT/β-Catenin Signaling in Rejuvenating Myogenic Differentiation of Aged Mesenchymal Stem Cells from Cardiac Patients. American Journal of Pathology, 2012, 181, 2067-2078.	1.9	37
135	Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. Journal of Molecular and Cellular Cardiology, 2016, 94, 32-42.	0.9	37
136	The IMPACT-CABG trial: A multicenter, randomized clinical trial of CD133+ stem cell therapy during coronary artery bypass grafting for ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 1582-1588.e2.	0.4	36
137	Effect of vitamin E on human glutathione peroxidase (gsh-px1) expression in cardiomyocytes. Free Radical Biology and Medicine, 1996, 21, 419-426.	1.3	35
138	Cardiac cell transplantation: closer to bedside. Annals of Thoracic Surgery, 2003, 75, S674-S677.	0.7	35
139	Novel cardioprotective effects of pravastatin in human ventricular cardiomyocytes subjected to hypoxia and reoxygenation: beneficial effects of statins independent of endothelial cells1. Journal of Surgical Research, 2004, 119, 66-71.	0.8	35
140	Recipient Age Determines the Cardiac Functional Improvement Achieved by Skeletal Myoblast Transplantation. Journal of the American College of Cardiology, 2007, 50, 1086-1092.	1.2	35
141	Elastin overexpression by cellâ€based gene therapy preserves matrix and prevents cardiac dilation. Journal of Cellular and Molecular Medicine, 2012, 16, 2429-2439.	1.6	34
142	Tissue-Engineered Grafts Matured in the Right Ventricular Outflow Tract. Cell Transplantation, 2004, 13, 169-177.	1.2	33
143	POU Homeodomain Protein Oct-1 Functions as a Sensor for Cyclic AMP. Journal of Biological Chemistry, 2009, 284, 26456-26465.	1.6	33
144	Serum-free differentiation of functional human coronary-like vascular smooth muscle cells from embryonic stem cells. Cardiovascular Research, 2013, 98, 125-135.	1.8	33

#	Article	IF	CITATIONS
145	APPL1 transgenic mice are protected from high-fat diet-induced cardiac dysfunction. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E795-E804.	1.8	33
146	Transplantation of cryopreserved cardiomyocytes. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 98-107.	0.4	32
147	Current Status of Cellular Therapy for Ischemic Heart Disease. Annals of Thoracic Surgery, 2005, 79, S2238-S2247.	0.7	32
148	Vitamin E and Oxidative Stress in the Heart of the Cardiomyopathic Syrian Hamster. Free Radical Biology and Medicine, 1998, 24, 252-258.	1.3	31
149	Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: Effects on left ventricular geometry and function. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1537-1548.	0.4	31
150	Hydrogels modified with QHREDCS peptide support cardiomyocyte survival in vitro and after sub-cutaneous implantation. Soft Matter, 2010, 6, 5089.	1.2	31
151	HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nature Communications, 2014, 5, 3430.	5.8	31
152	A secreted protein (Canopy 2, CNPY2) enhances angiogenesis and promotes smooth muscle cell migration and proliferation. Cardiovascular Research, 2015, 105, 383-393.	1.8	31
153	Ultrasound-targeted microbubble destruction in gene therapy: A new tool to cure human diseases. Genes and Diseases, 2017, 4, 64-74.	1.5	31
154	MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovascular Diabetology, 2022, 21, 31.	2.7	31
155	What's New in Cardiac Cell Therapy? Allogeneic Bone Marrow Stromal Cells as "Universal Donor Cells― Journal of Cardiac Surgery, 2010, 25, 359-366.	0.3	30
156	Ex Vivo Akt/HO-1 Gene Therapy to Human Endothelial Progenitor Cells Enhances Myocardial Infarction Recovery. Cell Transplantation, 2012, 21, 1443-1461.	1.2	30
157	Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. JACC Basic To Translational Science, 2017, 2, 702-716.	1.9	30
158	Emerging roles of extracellular vesicles in cardiac repair and rejuvenation. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H733-H744.	1.5	30
159	Targeted blockade of interleukin-8 abrogates its promotion of cervical cancer growth and metastasis. Molecular and Cellular Biochemistry, 2012, 375, 69-79.	1.4	29
160	Class II transactivator knockdown limits major histocompatibility complex II expression, diminishes immune rejection, and improves survival of allogeneic bone marrow stem cells in the infarcted heart. FASEB Journal, 2016, 30, 3069-3082.	0.2	29
161	Longâ€ŧerm repopulation of aged bone marrow stem cells using young Scaâ€1 cells promotes aged heart rejuvenation. Aging Cell, 2019, 18, e13026.	3.0	29
162	c-Kit Function Is Necessary for In Vitro Myogenic Differentiation of Bone Marrow Hematopoietic Cells. Stem Cells, 2009, 27, 1911-1920.	1.4	28

#	Article	IF	CITATIONS
163	Localized SDFâ€lalpha gene release mediated by collagen substrate induces CD117 ⁺ stem cells homing. Journal of Cellular and Molecular Medicine, 2010, 14, 392-402.	1.6	28
164	Reduced Ischemic Injury After Stroke in Mice by Angiogenic Gene Delivery Via Ultrasound-Targeted Microbubble Destruction. Journal of Neuropathology and Experimental Neurology, 2014, 73, 548-558.	0.9	28
165	Method of culturing cardiomyocytes from human pediatric ventricular myocardium. Cytotechnology, 1992, 14, 93-100.	0.3	27
166	Bio-stretch, a computerized cell strain apparatus for three-dimensional organotypic cultures. In Vitro Cellular and Developmental Biology - Animal, 1999, 35, 87-93.	0.7	27
167	c-Jun N-terminal Kinase-mediated Stabilization of Microsomal Prostaglandin E2 Synthase-1 mRNA Regulates Delayed Microsomal Prostaglandin E2 Synthase-1 Expression and Prostaglandin E2 Biosynthesis by Cardiomyocytes. Journal of Biological Chemistry, 2006, 281, 16443-16452.	1.6	27
168	Tissue Inhibitor of Matrix Metalloproteinase-3 or Vascular Endothelial Growth Factor Transfection of Aged Human Mesenchymal Stem Cells Enhances Cell Therapy after Myocardial Infarction. Rejuvenation Research, 2012, 15, 495-506.	0.9	27
169	Transforming the Promise of Pluripotent Stem Cell-Derived Cardiomyocytes to a Therapy: Challenges and Solutions for Clinical Trials. Canadian Journal of Cardiology, 2014, 30, 1335-1349.	0.8	27
170	Pressure Overload-Induced Cardiac Dysfunction in Aged Male Adiponectin Knockout Mice Is Associated With Autophagy Deficiency. Endocrinology, 2015, 156, 2667-2677.	1.4	27
171	Decreasing CNPY2 Expression Diminishes Colorectal Tumor Growth and Development through Activation of p53 Pathway. American Journal of Pathology, 2016, 186, 1015-1024.	1.9	27
172	Preservation of conductive propagation after surgical repair of cardiac defects with a bio-engineered conductive patch. Journal of Heart and Lung Transplantation, 2018, 37, 912-924.	0.3	27
173	Sirtuin3 protects aged human mesenchymal stem cells against oxidative stress and enhances efficacy of cell therapy for ischaemic heart diseases. Journal of Cellular and Molecular Medicine, 2018, 22, 5504-5517.	1.6	27
174	Role of TNF-α in myocardial dysfunction after hemorrhagic shock and lower-torso ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H942-H950.	1.5	26
175	The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension. Molecular and Cellular Biochemistry, 2002, 229, 73-83.	1.4	26
176	Cell transplantation to improve ventricular function in the failing heart. European Journal of Cardio-thoracic Surgery, 2003, 23, 907-916.	0.6	26
177	Combined transmyocardial revascularization and cell-based angiogenic gene therapy increases transplanted cell survival. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3311-H3316.	1.5	26
178	Lack of Microsomal Prostaglandin E ₂ Synthase-1 in Bone Marrow–Derived Myeloid Cells Impairs Left Ventricular Function and Increases Mortality After Acute Myocardial Infarction. Circulation, 2012, 125, 2904-2913.	1.6	26
179	miRâ€17 targets tissue inhibitor of metalloproteinase 1 and 2 to modulate cardiac matrix remodeling. FASEB Journal, 2013, 27, 4254-4265.	0.2	26
180	Young Bone-Marrow Sca-1+ Stem Cells Rejuvenate the Aged Heart and Improve Function after Injury through PDGFRβ-Akt pathway. Scientific Reports, 2017, 7, 41756.	1.6	26

#	Article	IF	CITATIONS
181	Knockdown of SIRT6 Enables Human Bone Marrow Mesenchymal Stem Cell Senescence. Rejuvenation Research, 2016, 19, 373-384.	0.9	25
182	Insulin-like growth factor binding protein related protein 1 knockdown attenuates hepatic fibrosis via the regulation of MMPs/TIMPs in mice. Hepatobiliary and Pancreatic Diseases International, 2019, 18, 38-47.	0.6	24
183	An electro-spun tri-component polymer biomaterial with optoelectronic properties for neuronal differentiation. Acta Biomaterialia, 2022, 139, 82-90.	4.1	24
184	Cell-based gene therapy modifies matrix remodeling after a myocardial infarction in tissue inhibitor of matrix metalloproteinase-3–deficient mice. Journal of Thoracic and Cardiovascular Surgery, 2009, 137, 471-480.e2.	0.4	23
185	Effects of Storage Solutions on the Viability of Human Umbilical Cord Mesenchymal Stem Cells for Transplantation. Cell Transplantation, 2013, 22, 1075-1086.	1.2	23
186	Young Bone Marrow Sca-1 Cells Rejuvenate the Aged Heart by Promoting Epithelial-to-Mesenchymal Transition. Theranostics, 2018, 8, 1766-1781.	4.6	23
187	CD34+ Stem Cells: Promising Roles in Cardiac Repair and Regeneration. Canadian Journal of Cardiology, 2019, 35, 1311-1321.	0.8	23
188	Mesenchymal stem cells engineered to overexpress stem cell factor improve cardiac function but have malignant potential. Journal of Thoracic and Cardiovascular Surgery, 2008, 136, 1388-1389.	0.4	22
189	Cell fusion contributes to the rescue of apoptotic cardiomyocytes by bone marrow cells. Journal of Cellular and Molecular Medicine, 2012, 16, 3085-3095.	1.6	22
190	Delineating the relationship between immune system aging and myogenesis in muscle repair. Aging Cell, 2021, 20, e13312.	3.0	21
191	Effects of Cell-Based Angiogenic Gene Therapy at 6 Months: Persistent Angiogenesis and Absence of Oncogenicity. Annals of Thoracic Surgery, 2007, 83, 640-646.	0.7	20
192	Surface immobilisation and properties of smooth muscle cells monitored by on-line acoustic wave detector. Analyst, The, 2008, 133, 85-92.	1.7	20
193	Expression of CNPY2 in Mouse Tissues: Quantification and Localization. PLoS ONE, 2014, 9, e111370.	1.1	20
194	Combined Procedure of Surgical Repair and Cell Transplantation for Left Ventricular Aneurysm: An Experimental Study. Circulation, 2002, 106, .	1.6	19
195	An adult uterine hemangioblast: evidence for extramedullary self-renewal and clonal bilineage potential. Blood, 2010, 116, 2932-2941.	0.6	18
196	Twoâ€photon microscopy of healthy, infarcted and stem ell treated regenerating heart. Journal of Biophotonics, 2011, 4, 297-304.	1.1	18
197	Autologous bone marrow cell transplantation combined with off-pump coronary artery bypass grafting in patients with ischemic cardiomyopathy. Canadian Journal of Surgery, 2008, 51, 269-75.	0.5	18
198	Cell transplantation comes of age. Journal of Thoracic and Cardiovascular Surgery, 2001, 121, 835-836.	0.4	17

#	Article	IF	CITATIONS
199	Inhibiting Matrix Metalloproteinase by Cell-Based <i>Timp-3</i> Gene Transfer Effectively Treats Acute and Chronic Ischemic Cardiomyopathy. Cell Transplantation, 2012, 21, 1039-1053.	1.2	17
200	l-Arginine protects human heart cells from low-volume anoxia and reoxygenation. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H805-H815.	1,5	16
201	Tetrahydrobiopterin deficiency exaggerates intimal hyperplasia after vascular injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R299-R304.	0.9	16
202	Diabetes influences cardiac extracellular matrix remodelling after myocardial infarction and subsequent development of cardiac dysfunction. Journal of Cellular and Molecular Medicine, 2012, 16, 2925-2934.	1.6	16
203	The Rejuvenation of Aged Stem Cells for Cardiac Repair. Canadian Journal of Cardiology, 2014, 30, 1299-1306.	0.8	16
204	The Promise and Challenges of Cardiac Stem Cell Therapy. Seminars in Thoracic and Cardiovascular Surgery, 2014, 26, 44-52.	0.4	16
205	Diabetic heart dysfunction: is cell transplantation a potential therapy?. Heart Failure Reviews, 2003, 8, 213-219.	1.7	15
206	Vascular Endothelial Growth Factor Receptor Upregulation in Response to Cell-Based Angiogenic Gene Therapy. Annals of Thoracic Surgery, 2005, 79, 2056-2063.	0.7	15
207	Myometrial cells induce angiogenesis and salvage damaged myocardium. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2057-H2066.	1.5	15
208	The MRL mouse heart does not recover ventricular function after a myocardial infarction. Cardiovascular Pathology, 2008, 17, 32-39.	0.7	15
209	Human angiogenic cell precursors restore function in the infarcted rat heart: A comparison of cell delivery routes. European Journal of Heart Failure, 2008, 10, 525-533.	2.9	15
210	Challenges in Allogeneic Mesenchymal Stem Cell–Mediated Cardiac Repair. Trends in Cardiovascular Medicine, 2010, 20, 263-268.	2.3	15
211	Non-invasive Macrophage Tracking Using Novel Porphysome Nanoparticles in the Post-myocardial Infarction Murine Heart. Molecular Imaging and Biology, 2016, 18, 557-568.	1.3	15
212	Young bone marrow Scaâ€1 cells protect aged retina from ischaemiaâ€reperfusion injury through activation of <scp>FGF</scp> 2. Journal of Cellular and Molecular Medicine, 2018, 22, 6176-6189.	1.6	15
213	An in vitro model to study myocardial ischemic injury. Cytotechnology, 1994, 16, 1-9.	0.3	14
214	Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Seminars in Thoracic and Cardiovascular Surgery, 2003, 15, 277-286.	0.4	14
215	Protective role of Nrf2 against ischemia reperfusion injury and cardiac allograft vasculopathy. American Journal of Transplantation, 2020, 20, 1262-1271.	2.6	14
216	Knockâ€out of MicroRNA 145 impairs cardiac fibroblast function and wound healing postâ€myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 9409-9419.	1.6	14

#	Article	IF	CITATIONS
217	Combined procedure of surgical repair and cell transplantation for left ventricular aneurysm: an experimental study. Circulation, 2002, 106, 1193-7.	1.6	14
218	Cardiac storage with University of Wisconsin solution and a nucleoside-transport blocker. Annals of Thoracic Surgery, 1995, 59, 1127-1133.	0.7	13
219	Myocardial aerobic metabolism is impaired in a cell culture model of cyanotic heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1673-H1681.	1.5	13
220	Reloading the heart: A new animal model of left ventricular assist device removal. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 99-106.	0.4	13
221	The cardiac repair benefits of inflammation do not persist: evidence from mast cell implantation. Journal of Cellular and Molecular Medicine, 2015, 19, 2751-2762.	1.6	13
222	Cellular, structural and functional cardiac remodelling following pressure overload and unloading. International Journal of Cardiology, 2016, 216, 32-42.	0.8	13
223	Mesenchymal Stromal Cells from Patients with Cyanotic Congenital Heart Disease are Optimal Candidate for Cardiac Tissue Engineering. Biomaterials, 2020, 230, 119574.	5.7	13
224	Considering Cause and Effect of Immune Cell Aging on Cardiac Repair after Myocardial Infarction. Cells, 2020, 9, 1894.	1.8	13
225	Uterine cells are recruited to the infarcted heart and improve cardiac outcomes in female rats. Journal of Molecular and Cellular Cardiology, 2012, 52, 1265-1273.	0.9	12
226	Transmyocardial Revascularization Enhances Bone Marrow Stem Cell Engraftment in Infarcted Hearts Through SCF—C-kit and SDF-1—CXCR4 Signaling Axes. Stem Cell Reviews and Reports, 2015, 11, 332-346.	5.6	12
227	Neovascularization derived from cell transplantation in ischemic myocardium. Molecular and Cellular Biochemistry, 2004, 264, 133-142.	1.4	11
228	Design and Development of a Novel Biostretch Apparatus for Tissue Engineering. Journal of Biomechanical Engineering, 2010, 132, 014503.	0.6	11
229	Effect of neuronâ€derived neurotrophic factor on rejuvenation of human adiposeâ€derived stem cells for cardiac repair after myocardial infarction. Journal of Cellular and Molecular Medicine, 2019, 23, 5981-5993.	1.6	11
230	Rectification of radiotherapy-induced cognitive impairments in aged mice by reconstituted Sca-1+ stem cells from young donors. Journal of Neuroinflammation, 2020, 17, 51.	3.1	11
231	Human endometrium-derived stem cell improves cardiac function after myocardial ischemic injury by enhancing angiogenesis and myocardial metabolism. Stem Cell Research and Therapy, 2021, 12, 344.	2.4	11
232	Cultured vascular endothelial cell susceptibility to extracellularly generated oxidant injury. Journal of Molecular and Cellular Cardiology, 1992, 24, 595-604.	0.9	10
233	Smooth Muscle Cells Transplantation is better than Heart Cells Transplantation for Improvement of Heart Function in Dilated Cardiomyopathy. Yonsei Medical Journal, 2002, 43, 296.	0.9	10
234	Novel mediators of aneurysm progression in bicuspid aortic valve disease. Journal of Molecular and Cellular Cardiology, 2019, 132, 71-83.	0.9	10

#	Article	IF	CITATIONS
235	Injectable conductive hydrogel can reduce pacing threshold and enhance efficacy of cardiac pacemaker. Theranostics, 2021, 11, 3948-3960.	4.6	10
236	Caveolin: a key target for modulating nitric oxide availability in health and disease. Molecular and Cellular Biochemistry, 2003, 247, 101-109.	1.4	9
237	Does Ischemic Preconditioning Afford Clinically Relevant Cardioprotection?. American Journal of Cardiovascular Drugs, 2003, 3, 1-11.	1.0	9
238	Uterine-derived progenitor cells are immunoprivileged and effectively improve cardiac regeneration when used for cell therapy. Journal of Molecular and Cellular Cardiology, 2015, 84, 116-128.	0.9	9
239	Fate of modular cardiac tissue constructs in a syngeneic rat model. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1247-1258.	1.3	9
240	Optimal conditions for heart cell cryopreservation for transplantation. Molecular and Cellular Biochemistry, 2003, 242, 109-114.	1.4	8
241	Dual roles for bone marrowâ€derived Scaâ€l cells in cardiac function. FASEB Journal, 2017, 31, 2905-2915.	0.2	8
242	Evidence for the existence of CD34 ⁺ angiogenic stem cells in human firstâ€ŧrimester decidua and their therapeutic for ischaemic heart disease. Journal of Cellular and Molecular Medicine, 2020, 24, 11837-11848.	1.6	8
243	The limits of cardiac preservation with University of Wisconsin solution. Annals of Thoracic Surgery, 1991, 52, 1021-1025.	0.7	7
244	Prolonged preservation with University of Wisconsin solution. Journal of Surgical Research, 1991, 50, 330-334.	0.8	7
245	Cell transplantation in non-ischemic dilated cardiomyopathy. General Thoracic and Cardiovascular Surgery, 2002, 50, 457-460.	0.4	7
246	Cardiac restoration by cell transplantation. International Journal of Cardiology, 2004, 95, S5-S7.	0.8	7
247	Heart cell implantation after myocardial infarction. Coronary Artery Disease, 2005, 16, 85-91.	0.3	7
248	Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering. , 2009, 114, 107-128.		7
249	Functional variant in methionine synthase reductase intron-1 is associated with pleiotropic congenital malformations. Molecular and Cellular Biochemistry, 2015, 407, 51-56.	1.4	7
250	Knockout of Canopy 2 activates p16INK4a pathway to impair cardiac repair. Journal of Molecular and Cellular Cardiology, 2019, 132, 36-48.	0.9	7
251	Aging impairs human bone marrow function and cardiac repair following myocardial infarction in a humanized chimeric mouse. Aging Cell, 2021, 20, e13494.	3.0	7
252	Comparison of two experimental models for assessment of cardiac preservation. Annals of Thoracic Surgery, 1993, 55, 144-150.	0.7	6

#	Article	IF	CITATIONS
253	Cell transplantation for heart disease: The clinical perspective. Evidence-based Cardiovascular Medicine, 2005, 9, 2-7.	0.0	6
254	Neonatal Transfer of Membrane-Bound Stem Cell Factor Improves Survival and Heart Function in Aged Mice After Myocardial Ischemia. Human Gene Therapy, 2012, 23, 1280-1289.	1.4	6
255	Bioâ€Conductive Polymers for Treating Myocardial Conductive Defects: Longâ€Term Efficacy Study. Advanced Healthcare Materials, 2022, 11, e2101838.	3.9	6
256	Stroke-Induced Neurological Dysfunction in Aged Mice Is Attenuated by Preconditioning with Young Sca-1+ Stem Cells. Stem Cells, 2022, 40, 564-576.	1.4	6
257	Optimal Myocardial Preconditioning in Humansa. Annals of the New York Academy of Sciences, 1999, 874, 306-319.	1.8	5
258	Cell Transplantation to Improve Heart Function: Cell or Matrix. Yonsei Medical Journal, 2004, 45, S72A3.	0.9	5
259	Preservation of heart function in diabetic rats by the combined effects of muscle cell implantation and insulin therapy. European Journal of Heart Failure, 2008, 10, 14-21.	2.9	5
260	The challenges of stem cell therapy. Canadian Journal of Physiology and Pharmacology, 2012, 90, 273-274.	0.7	5
261	Age-related defects in autophagy alter the secretion of paracrine factors from bone marrow mononuclear cells. Aging, 2021, 13, 14687-14708.	1.4	5
262	Synthesis of Aliphatic Polyester Hydrogel for Cardiac Tissue Engineering. Methods in Molecular Biology, 2014, 1181, 51-59.	0.4	5
263	Optimizing cardiac cell therapy: From processing to delivery. Journal of Thoracic and Cardiovascular Surgery, 2005, 130, 966-968.	0.4	4
264	Cardiovascular Tissue Engineering Therapy: So Near, So Far?. Annals of Thoracic Surgery, 2005, 79, 1831-1833.	0.7	4
265	Polarized light based birefringence measurements for monitoring myocardial regeneration. , 2009, , .		4
266	Uterine-Derived Stem Cells Reconstitute the Bone Marrow of Irradiated Mice. Stem Cells and Development, 2015, 24, 938-947.	1.1	4
267	Heart Cell Transplantation Improves Heart Function in Dilated Cardiomyopathic Hamsters. Circulation, 2000, 102, .	1.6	4
268	Enhanced Myocardial Angiogenesis by Gene Transfer With Transplanted Cells. Circulation, 2001, 104, .	1.6	4
269	Targeting aged bone marrow for systemic rejuvenation. Aging, 2020, 12, 2024-2025.	1.4	4
270	Optimal conditions for heart cell cryopreservation for transplantation. , 2003, , 109-114.		4

#	Article	IF	CITATIONS
271	Optimal conditions for heart cell cryopreservation for transplantation. Molecular and Cellular Biochemistry, 2003, 242, 109-14.	1.4	4
272	Modulation of Alloimmune Responses by Interleukin-10 Prevents Rejection of Implanted Allogeneic Smooth Muscle Cells and Restores Postinfarction Ventricular Function. Cell Transplantation, 2015, 24, 1013-1029.	1.2	3
273	Stem cell therapy for heart failure: Out with the new and in with the old?. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 1035-1037.	0.4	3
274	Cell transplantation, ventricular remodeling, and the extracellular matrix. Journal of Thoracic and Cardiovascular Surgery, 2002, 123, 0584-0585.	0.4	3
275	Nr2e1 Downregulation Is Involved in Excess Retinoic Acid-induced Developmental Abnormality in the Mouse Brain. Biomedical and Environmental Sciences, 2017, 30, 185-193.	0.2	3
276	Cardiac Myocyte Transplantation Does Not Increase Global Epicardial Repolarization Heterogeneity in a Rat Infarct Model. Journal of Heart and Lung Transplantation, 2007, 26, 630-636.	0.3	2
277	Bone Marrow Stem Cells: Properties and Pluripotency. , 2008, , 268-283.		2
278	Turbid polarimetry for tissue characterization. Proceedings of SPIE, 2009, , .	0.8	2
279	Back to the bench: The rejuvenation of stem cell therapy—the therapeutic potential of CD133+ progenitor cells. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 1369-1370.	0.4	2
280	Single Nucleotide Variances Can Account for Loss of microRNA Function. Journal of the American College of Cardiology, 2014, 64, 278-280.	1.2	2
281	Cardiac Cell Transplantation. Developments in Cardiovascular Medicine, 1995, , 337-347.	0.1	2
282	Cardiac restoration: frontier or fantasy?. Canadian Journal of Cardiology, 2005, 21, 355-9.	0.8	2
283	Cell transplantation as a novel therapy for congestive heart failure. ACC Current Journal Review, 2000, 9, 39-42.	0.1	1
284	Cardiac-committed mouse ESC transplantation improves cardiac function in a sheep model of myocardial infarction. Regenerative Medicine, 2006, 1, 133-136.	0.8	1
285	Cell Transplantation: Back to the Bench: Introduction. Seminars in Thoracic and Cardiovascular Surgery, 2008, 20, 85-86.	0.4	1
286	Intrinsic cardiac stem cells are essential for regeneration. Journal of Thoracic and Cardiovascular Surgery, 2016, 152, 583-584.	0.4	1
287	Uterine-Derived CD11b Cells Significantly Increase Vasculogenesis and Promote Myocardial Healing in Ischemic Cardiomyopathy. Cell Transplantation, 2016, 25, 1665-1674.	1.2	1
288	Tissue Engineering Applications for Cardiovascular Substitutes. , 2009, , 887-911.		1

#	Article	IF	CITATIONS
289	Commentary: Toward the creation of a functional cardiac patch for repair and regeneration. Journal of Thoracic and Cardiovascular Surgery, 2023, 165, e141-e142.	0.4	1
290	Commentary. Journal of Thoracic and Cardiovascular Surgery, 2000, 120, 1168.	0.4	0
291	Cardiomyocytes. , 2001, , 103-124.		0
292	Cell transplantation comes of age. Journal of Thoracic and Cardiovascular Surgery, 2003, 125, S53-S54.	0.4	0
293	Cell Transplantation. , 2005, , 325-343.		0
294	Feel isolated? Bridging communication between host myocardium and skeletal myoblast grafts. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 357-359.	0.4	0
295	Commentary: Circulating factors released after myocardial infarction: Beneficial or detrimental?. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2270-2271.	0.4	0
296	Guar gum consumption increases hepatic nuclear SREBP2 and LDLr expression in pigs fed an atherogenic diet. FASEB Journal, 2007, 21, A700.	0.2	0
297	Development of a Uniaxial Cyclic Stretch Apparatus for Tissue Engineering. , 2009, , .		0
298	Optimizing Stem Cell Therapy for Cardiac Repair Following a Myocardial Infarction. , 2013, , 513-524.		0
299	Understanding systemic factors in aging and rejuvenation. Aging, 2020, 12, 20936-20937.	1.4	0
300	Translating bone marrow rejuvenation from the bench to beside. Aging, 0, , .	1.4	0
301	Uterus: A Unique Stem Cell Reservoir Able to Support Cardiac Repair via Crosstalk among Uterus, Heart, and Bone Marrow. Cells, 2022, 11, 2182.	1.8	0