Yuhua Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632907/publications.pdf Version: 2024-02-01

VUHUA SONC

#	Article	IF	CITATIONS
1	Vitamin D3 and its hydroxyderivatives as promising drugs against COVID-19: a computational study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11594-11610.	3.5	16
2	Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Bioorganic Chemistry, 2022, 121, 105660.	4.1	10
3	Molecular and structural basis of interactions of vitamin D3 hydroxyderivatives with aryl hydrocarbon receptor (AhR): An integrated experimental and computational study. International Journal of Biological Macromolecules, 2022, 209, 1111-1123.	7.5	17
4	Metabolic activation of tachysterol ₃ to biologically active hydroxyderivatives that act on <scp>VDR</scp> , <scp>AhR</scp> , <scp>LXRs,</scp> and <scp>PPARγ</scp> receptors. FASEB Journal, 2022, 36, .	0.5	29
5	Functional insights from biophysical study of TREM2 interactions with apoE and Aβ _{1â€42} . Alzheimer's and Dementia, 2021, 17, 475-488.	0.8	31
6	Vitamin D and lumisterol derivatives can act on liver X receptors (LXRs). Scientific Reports, 2021, 11, 8002.	3.3	60
7	In silico identification of available drugs targeting cell surface BiP to disrupt SARS-CoV-2 binding and replication: Drug repurposing approach. European Journal of Pharmaceutical Sciences, 2021, 160, 105771.	4.0	12
8	Sam68 promotes hepatic gluconeogenesis via CRTC2. Nature Communications, 2021, 12, 3340.	12.8	12
9	Molecular insights into the effect of an apoptotic raft-like bilayer on the conformation and dynamics of calreticulin. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183146.	2.6	2
10	Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochemistry and Biophysics, 2020, 78, 165-180.	1.8	113
11	Molecular insight for the role of key residues of calreticulin in its binding activities: A computational study. Computational Biology and Chemistry, 2020, 85, 107228.	2.3	6
12	Neurodegenerative Disease–Associated Variants in TREM2 Destabilize the Apical Ligand-Binding Region of the Immunoglobulin Domain. Frontiers in Neurology, 2019, 10, 1252.	2.4	20
13	Multiscale simulation of the interaction of calreticulin-thrombospondin-1 complex with a model membrane microdomain. Journal of Biomolecular Structure and Dynamics, 2019, 37, 811-822.	3.5	7
14	Calmodulin antagonist enhances DR5â€mediated apoptotic signaling in TRAâ€8 resistant triple negative breast cancer cells. Journal of Cellular Biochemistry, 2018, 119, 6216-6230.	2.6	14
15	Calmodulin Binding to Death Receptor 5-mediated Death-Inducing Signaling Complex in Breast Cancer Cells. Journal of Cellular Biochemistry, 2017, 118, 2285-2294.	2.6	7
16	Activation mechanisms of αVÎ23 integrin by binding to fibronectin: A computational study. Protein Science, 2017, 26, 1124-1137.	7.6	25
17	Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells. Journal of Biological Chemistry, 2016, 291, 12862-12870.	3.4	15
18	Structural Insight for Roles of DR5 Death Domain Mutations on Oligomerization of DR5 Death Domain–FADD Complex in the Death-Inducing Signaling Complex Formation: A Computational Study. Journal of Molecular Modeling, 2016, 22, 89.	1.8	11

Yuhua Song

#	Article	IF	CITATIONS
19	Molecular Insight into the Effect of Lipid Bilayer Environments on Thrombospondin-1 and Calreticulin Interactions. Biochemistry, 2014, 53, 6309-6322.	2.5	24
20	Characterization of Calmodulin–Fas Death Domain Interaction: An Integrated Experimental and Computational Study. Biochemistry, 2014, 53, 2680-2688.	2.5	12
21	Structural insight for the roles of fas death domain binding to fadd and oligomerization degree of the fas–fadd complex in the deathâ€inducing signaling complex formation: A computational study. Proteins: Structure, Function and Bioinformatics, 2013, 81, 377-385.	2.6	10
22	Molecular and Structural Insight into the Role of Key Residues of Thrombospondin-1 and Calreticulin in Thrombospondin-1â^'Calreticulin Binding. Biochemistry, 2011, 50, 566-573.	2.5	17
23	Trifluoperazine regulation of calmodulin binding to Fas: A computational study. Proteins: Structure, Function and Bioinformatics, 2011, 79, 2543-2556.	2.6	15
24	Effects of altered restraints in beta1 integrin on the force-regulated interaction between the glycosylated I-like domain of beta1 integrin and fibronectin III9-10: a steered molecular dynamic study. MCB Molecular and Cellular Biomechanics, 2011, 8, 233-52.	0.7	1
25	Role of Altered Sialylation of the I-Like Domain of β1 Integrin inÂthe Binding of Fibronectin to β1 Integrin: Thermodynamics and Conformational Analyses. Biophysical Journal, 2010, 99, 208-217.	0.5	31
26	Structural Insight into the Role of Thrombospondin-1 Binding to Calreticulin in Calreticulin-Induced Focal Adhesion Disassembly. Biochemistry, 2010, 49, 3685-3694.	2.5	41
27	Effect of altered glycosylation on the structure of the lâ€ike domain of β1 integrin: A molecular dynamics study. Proteins: Structure, Function and Bioinformatics, 2008, 73, 989-1000.	2.6	40
28	Molecular Dynamics Simulations of Asymmetric NaCl and KCl Solutions Separated by Phosphatidylcholine Bilayers: Potential Drops and Structural Changes Induced by Strong Na+-Lipid Interactions and Finite Size Effects. Biophysical Journal, 2008, 94, 3565-3576.	0.5	106
29	Conformation and Free Energy Analyses of the Complex of Calcium-Bound Calmodulin and the Fas Death Domain. Biophysical Journal, 2008, 95, 5913-5921.	0.5	24
30	Molecular Dynamics Simulations of Salicylate Effects on the Micro- and Mesoscopic Properties of a Dipalmitoylphosphatidylcholine Bilayer. Biochemistry, 2005, 44, 13425-13438.	2.5	44