Giuseppe Gigli

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3632767/giuseppe-gigli-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

368 12,130 59 91 h-index g-index citations papers 6.26 13,516 7.7 391 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
368	Co-loading of doxorubicin and iron oxide nanocubes in polycaprolactone fibers for combining Magneto-Thermal and chemotherapeutic effects on cancer cells. <i>Journal of Colloid and Interface Science</i> , 2022 , 607, 34-44	9.3	3
367	Colloidal Bismuth Chalcohalide Nanocrystals Angewandte Chemie - International Edition, 2022,	16.4	2
366	Low-cost gel polymeric electrolytes for electrochromic applications. <i>Solar Energy Materials and Solar Cells</i> , 2022 , 111657	6.4	1
365	Spontaneous Coassembly of the Protein Terthiophene into Fluorescent Electroactive Microfibers in 2D and 3D Cell Cultures <i>ACS Omega</i> , 2022 , 7, 12624-12636	3.9	
364	Towards the scale-up of solid-state, low-emissive electrochromic films, fabricated on a single substrate with novel electrolyte formulations. <i>Solar Energy Materials and Solar Cells</i> , 2022 , 241, 111760	6.4	O
363	A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. <i>Biosensors and Bioelectronics</i> , 2022 , 212, 114401	11.8	О
362	Neurovascular signals in amyotrophic lateral sclerosis. Current Opinion in Biotechnology, 2021, 74, 75-83	11.4	O
361	Shaping the topology of light with a moving Rabi-oscillating vortex. <i>Optics Express</i> , 2021 , 29, 37262-372	.8903	O
360	Managing Growth and Dimensionality of Quasi 2D Perovskite Single-Crystalline Flakes for Tunable Excitons Orientation. <i>Advanced Materials</i> , 2021 , 33, e2102326	24	7
359	Tuning of the Berry curvature in 2D perovskite polaritons. Nature Nanotechnology, 2021,	28.7	7
358	Pseudocapacitive behaviour in sol-gel derived electrochromic titania nanostructures. <i>Nanotechnology</i> , 2021 , 32, 045703	3.4	3
357	Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. <i>Nanotechnology</i> , 2021 , 32, 062001	3.4	8
356	A microfabricated multi-compartment device for neuron and Schwann cell differentiation. <i>Scientific Reports</i> , 2021 , 11, 7019	4.9	2
355	Lipid-polymer hybrid nanoparticles in cancer therapy: current overview and future directions. <i>Nano Express</i> , 2021 , 2, 012006	2	7
354	Implication of polymeric template agent on the formation process of hybrid halide perovskite film. <i>Nanotechnology</i> , 2021 ,	3.4	5
353	Nano-encapsulation of hydroxytyrosol into formulated nanogels improves therapeutic effects against hepatic steatosis: An in vitro study. <i>Materials Science and Engineering C</i> , 2021 , 124, 112080	8.3	7
352	Processable Thiophene-Based Polymers with Tailored Electronic Properties and their Application in Solid-State Electrochromic Devices Using Nanoparticle Films. <i>Advanced Electronic Materials</i> , 2021 , 7, 210	06466	1

(2021-2021)

351	Methylammonium-formamidinium reactivity in aged organometal halide perovskite inks. <i>Cell Reports Physical Science</i> , 2021 , 2, 100432	6.1	4	
350	Inclusion of 2D Transition Metal Dichalcogenides in Perovskite Inks and Their Influence on Solar Cell Performance. <i>Nanomaterials</i> , 2021 , 11,	5.4	3	
349	Light-Emitting Textiles: Device Architectures, Working Principles, and Applications. <i>Micromachines</i> , 2021 , 12,	3.3	5	
348	Highly Sensitive Fluorescent pH Microsensors Based on the Ratiometric Dye Pyranine Immobilized on Silica Microparticles. <i>Chemistry - A European Journal</i> , 2021 , 27, 13318-13324	4.8	3	
347	Electronic transport, ionic activation energy and trapping phenomena in a polymer-hybrid halide perovskite composite. <i>Journal of Science: Advanced Materials and Devices</i> , 2021 , 6, 543-543	4.2	2	
346	Dynamics of a Vortex Lattice in an Expanding Polariton Quantum Fluid. <i>Physical Review Letters</i> , 2021 , 127, 047401	7.4	Ο	
345	Origin of ETetrahydrocannabinol Impurity in Synthetic Cannabidiol. <i>Cannabis and Cannabinoid Research</i> , 2021 , 6, 28-39	4.6	6	
344	Flexible distributed Bragg reflectors as optical outcouplers for OLEDs based on a polymeric anode. Journal of Information Display, 2021 , 22, 39-47	4.1	3	
343	Capsid-like biodegradable poly-glycolic acid nanoparticles for a long-time release of nucleic acid molecules. <i>Materials Advances</i> , 2021 , 2, 310-321	3.3	2	
342	Full-Bloch beams and ultrafast Rabi-rotating vortices. <i>Physical Review Research</i> , 2021 , 3,	3.9	6	
341	Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2756-2784	7.3	9	
340	The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. <i>Cancers</i> , 2021 , 13,	6.6	8	
339	Improved Photostability in Fluorinated 2D Perovskite Single Crystals. Nanomaterials, 2021, 11,	5.4	1	
338	Erythrocytes and Nanoparticles: New Therapeutic Systems. Applied Sciences (Switzerland), 2021, 11, 217	73 .6	5	
337	Preparation and Characterization of Salt-Mediated Injectable Thermosensitive Chitosan/Pectin Hydrogels for Cell Embedding and Culturing. <i>Polymers</i> , 2021 , 13,	4.5	4	
336	HPLC-UV-HRMS analysis of cannabigerovarin and cannabigerobutol, the two impurities of cannabigerol extracted from hemp. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2021 , 203, 11421	1 3 ·5	2	
335	Control of Electron Transfer Processes in Multidimensional Arylamine-Based Mixed-Valence Compounds by Molecular Backbone Design. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 7840-7851	2.8	2	
334	Oxidative Stress and Multi-Organel Damage Induced by Two Novel Phytocannabinoids, CBDB and CBDP, in Breast Cancer Cells. <i>Molecules</i> , 2021 , 26,	4.8	1	

333	HALLOYSITE-BASED NANOSYSTEMS FOR BIOMEDICAL APPLICATIONS. <i>Clays and Clay Minerals</i> , 2021 , 1	2.1	2
332	Electrospun polyvinyl-alcohol/gum arabic nanofibers: Biomimetic platform for in vitro cell growth and cancer nanomedicine delivery. <i>International Journal of Biological Macromolecules</i> , 2021 , 188, 764-7	73 ^{7.9}	6
331	A thermo-sensitive chitosan/pectin hydrogel for long-term tumor spheroid culture. <i>Carbohydrate Polymers</i> , 2021 , 274, 118633	10.3	6
330	The novel heptyl phorolic acid cannabinoids content in different Cannabis sativa L. accessions. <i>Talanta</i> , 2021 , 235, 122704	6.2	2
329	Thermosensitive chitosan-based hydrogels supporting motor neuron-like NSC-34 cell differentiation. <i>Biomaterials Science</i> , 2021 , 9, 7492-7503	7.4	2
328	Identification of a new cannabidiol n-hexyl homolog in a medicinal cannabis variety with an antinociceptive activity in mice: cannabidihexol. <i>Scientific Reports</i> , 2020 , 10, 22019	4.9	18
327	Observation of Two Thresholds Leading to Polariton Condensation in 2D Hybrid Perovskites. <i>Advanced Optical Materials</i> , 2020 , 8, 2000176	8.1	14
326	Fluorescent nanoparticles for sensing. Frontiers of Nanoscience, 2020, 16, 117-149	0.7	5
325	Quantum hydrodynamics of a single particle. Light: Science and Applications, 2020, 9, 85	16.7	3
324	Simple Processing Additive-Driven 20% Efficiency for Inverted Planar Heterojunction Perovskite Solar Cells. <i>ACS Applied Materials & Solar Cells</i> . 12, 18431-18436	9.5	8
323	Polaritonic Neuromorphic Computing Outperforms Linear Classifiers. <i>Nano Letters</i> , 2020 , 20, 3506-351	211.5	26
322	Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence. <i>Dyes and Pigments</i> , 2020 , 177, 108325	4.6	8
321	Probing the pH Microenvironment of Mesenchymal Stromal Cell Cultures on Additive-Manufactured Scaffolds. <i>Small</i> , 2020 , 16, e2002258	11	7
320	Directional Goldstone waves in polariton condensates close to equilibrium. <i>Nature Communications</i> , 2020 , 11, 217	17.4	8
319	X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis. <i>Journal of Synchrotron Radiation</i> , 2020 , 27, 1042-1048	2.4	3
318	Simplified All-Solid-State WO3 Based Electrochromic Devices on Single Substrate: Toward Large Area, Low Voltage, High Contrast, and Fast Switching Dynamics. <i>Advanced Materials Interfaces</i> , 2020 , 7, 1901663	4.6	14
317	Isolation of a High-Affinity Cannabinoid for the Human CB1 Receptor from a Medicinal Variety: ETetrahydrocannabutol, the Butyl Homologue of ETetrahydrocannabinol. <i>Journal of Natural Products</i> , 2020 , 83, 88-98	4.9	30
316	Highly Efficient All-Solid-State WO3-Perovskite Photovoltachromic Cells for Single-Glass Smart Windows. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10453-10462	6.1	12

315	Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 6550	2.6	7	
314	A synergic approach to enhance long-term culture and manipulation of MiaPaCa-2 pancreatic cancer spheroids. <i>Scientific Reports</i> , 2020 , 10, 10192	4.9	12	
313	X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. <i>Frontiers in Neuroscience</i> , 2020 , 14, 584161	5.1	3	
312	Lipid-Based Nanovesicles for Simultaneous Intracellular Delivery of Hydrophobic, Hydrophilic, and Amphiphilic Species. <i>Frontiers in Bioengineering and Biotechnology</i> , 2020 , 8, 690	5.8	6	
311	Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10978-10985	5 ^{5.6}	2	
310	pH Monitoring: Probing the pH Microenvironment of Mesenchymal Stromal Cell Cultures on Additive-Manufactured Scaffolds (Small 34/2020). <i>Small</i> , 2020 , 16, 2070187	11		
309	Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. <i>Biomaterials Science</i> , 2020 , 8, 4887-4905	7.4	25	
308	Pitfalls in the analysis of phytocannabinoids in cannabis inflorescence. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 4009-4022	4.4	28	
307	Quantum Nature of Light in Nonstoichiometric Bulk Perovskites. ACS Nano, 2019, 13, 10711-10716	16.7	2	
306	Chemical and spectroscopic characterization data of 'cannabidibutol', a novel cannabidiol butyl analog. <i>Data in Brief</i> , 2019 , 26, 104463	1.2	12	
305	Nanostructuring Iridium Complexes into Crystalline Phosphorescent Nanoparticles: Structural Characterization, Photophysics, and Biological Applications <i>ACS Applied Bio Materials</i> , 2019 , 2, 4594-46	0 ¹ 3 ¹	3	
304	Tailoring of the self-assembled structures and optical waveguide behaviour of arylaminofluorenone derivatives. <i>Dyes and Pigments</i> , 2019 , 171, 107780	4.6	2	
303	Processing Techniques 2019 , 37-93			
302	Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. <i>Science Advances</i> , 2019 , 5, eaav9967	14.3	59	
301	Josephson vortices induced by phase twisting a polariton superfluid. <i>Nature Photonics</i> , 2019 , 13, 488-49	3 3.9	9	
300	Thermodynamically versus Kinetically Controlled Self-Assembly of a Naphthalenediimide-Thiophene Derivative: From Crystalline, Fluorescent, n-Type Semiconducting 1D Needles to Nanofibers. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 16864-16871	9.5	14	
299	High-Performance Electrofluorochromic Switching Devices Using a Novel Arylamine-Fluorene Redox-Active Fluorophore. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 12202-12208	9.5	23	
298	Enantiopure polythiophene nanoparticles. Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity <i>RSC Advances</i> , 2019 , 9, 23036-23044	3.7	10	

297	Analysis of impurities of cannabidiol from hemp. Isolation, characterization and synthesis of cannabidibutol, the novel cannabidiol butyl analog. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2019 , 175, 112752	3.5	37
296	Self-Trapping of Exciton-Polariton Condensates in GaAs Microcavities. <i>Physical Review Letters</i> , 2019 , 123, 047401	7.4	6
295	A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Eetrahydrocannabinol: ETetrahydrocannabiphorol. <i>Scientific Reports</i> , 2019 , 9, 20335	4.9	87
294	Novel synthesis of platinum complexes and their intracellular delivery to tumor cells by means of magnetic nanoparticles. <i>Nanoscale</i> , 2019 , 11, 23482-23497	7.7	17
293	Towards the development of human immune-system-on-a-chip platforms. <i>Drug Discovery Today</i> , 2019 , 24, 517-525	8.8	54
292	First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. <i>Science Advances</i> , 2018 , 4, eaao6814	14.3	34
291	Interactions and scattering of quantum vortices in a polariton fluid. <i>Nature Communications</i> , 2018 , 9, 1467	17.4	28
290	Advanced processing and characterization of Nafion electrolyte films for solid-state electrochromic devices fabricated at room temperature on single substrate. <i>Solid State Ionics</i> , 2018 , 317, 46-52	3.3	21
289	Superluminal X-waves in a polariton quantum fluid. Light: Science and Applications, 2018, 7, 17119	16.7	15
288	Ultrastrong Plasmon E xciton Coupling by Dynamic Molecular Aggregation. <i>ACS Photonics</i> , 2018 , 5, 143-	15603	38
287	Colorless to All-Black Full-NIR High-Contrast Switching in Solid Electrochromic Films Prepared with Organic Mixed Valence Systems Based on Dibenzofulvene Derivatives. <i>Chemistry of Materials</i> , 2018 , 30, 5610-5620	9.6	37
286	Mid-Infrared Plasmonic Excitation in Indium Tin Oxide Microhole Arrays. ACS Photonics, 2018, 5, 2431-2	4 8 63	16
285	Fully integrated electrochromic-OLED devices for highly transparent smart glasses. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 7274-7284	7.1	21
284	Topological order and thermal equilibrium in polariton condensates. <i>Nature Materials</i> , 2018 , 17, 145-15	127	51
283	Controlling the Functional Properties of Oligothiophene Crystalline Nano/Microfibers via Tailoring of the Self-Assembling Molecular Precursors. <i>Advanced Functional Materials</i> , 2018 , 28, 1801946	15.6	17
282	Emerging Technologies for Cancer Research: Towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models. <i>Current Medicinal Chemistry</i> , 2018 , 25, 4616-4637	4.3	16
281	Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells. <i>Nano Energy</i> , 2018 , 54, 400-408	17.1	36
280	Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off. <i>Scientific Reports</i> , 2018 , 8, 15496	4.9	33

279	Deployment and exploitation of nanotechnology nanomaterials and nanomedicine 2018,		23
278	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. <i>ACS Photonics</i> , 2018 , 5, 4179-4185	6.3	44
277	Energy savings due to building integration of innovative solid-state electrochromic devices. <i>Applied Energy</i> , 2018 , 225, 975-985	10.7	40
276	Bright Polariton Coumarin-Based OLEDs Operating in the Ultrastrong Coupling Regime. <i>Advanced Optical Materials</i> , 2018 , 6, 1800364	8.1	31
275	Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior. <i>Nano Letters</i> , 2017 , 17, 1248-1254	11.5	32
274	High-speed flow of interacting organic polaritons. <i>Light: Science and Applications</i> , 2017 , 6, e16212	16.7	62
273	GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties. <i>Nanotechnology</i> , 2017 , 28, 174001	3.4	11
272	Effects of donor position on dibenzofulvene-based organic dyes for photovoltaics. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 8694-8707	2.1	3
271	Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells. <i>Advanced Energy Materials</i> , 2017 , 7, 1602600	21.8	65
270	Human Hepatocarcinoma Cell Targeting by Glypican-3 Ligand Peptide Functionalized Silica Nanoparticles: Implications for Ultrasound Molecular Imaging. <i>Langmuir</i> , 2017 , 33, 4490-4499	4	12
269	An ion conductive polysiloxane as effective gel electrolyte for long stable dye solar cells. <i>Journal of Power Sources</i> , 2017 , 356, 191-199	8.9	11
268	Single crystal mesoporous ZnO platelets as efficient photoanodes for sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 168, 227-233	6.4	14
267	Large area self-powered semitransparent trifunctional device combining photovoltaic energy production, lighting and dynamic shading control. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 160, 435-	443	15
266	In-plane cost-effective magnetically actuated valve for microfluidic applications. <i>Smart Materials and Structures</i> , 2017 , 26, 045033	3.4	10
265	Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. <i>Scientific Reports</i> , 2017 , 7, 12672	4.9	34
264	Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. <i>Applied</i>		T /
	Physics Letters, 2017, 111, 163301	3.4	14
263		3·4 9·5	6

261	Room-temperature superfluidity in a polariton condensate. <i>Nature Physics</i> , 2017 , 13, 837-841	16.2	163
260	Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus Inverted Device Configurations. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 24778-24787	9.5	59
259	Poly(lactide-co-glycolide) nanoparticles embedded in a micropatterned collagen scaffold for neuronal tissue regeneration. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2017 , 66, 359-368	3	6
258	Bloch Surface Waves for MoS2 Emission Coupling and Polariton Systems. <i>Applied Sciences</i> (Switzerland), 2017 , 7, 1217	2.6	6
257	Photoinduced processes in macrocyclic isoalloxazine Inthracene systems. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 314, 189-197	4.7	1
256	Twofold Self-Assembling of Nanocrystals Into Nanocomposite Polymer. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22, 1-7	3.8	4
255	Improving the Propertyflunction Tuning Range of Thiophene Materials via Facile Synthesis of Oligo/Polythiophene-S-Oxides and Mixed Oligo/Polythiophene-S-Oxides/Oligo/Polythiophene-S,S-Dioxides. <i>Advanced Functional Materials</i> , 2016 , 26, 6970-6984	15.6	23
254	Room temperature processing for solid-state electrochromic devices on single substrate: From glass to flexible plastic. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 155, 411-420	6.4	27
253	Forthcoming perspectives of photoelectrochromic devices: a critical review. <i>Energy and Environmental Science</i> , 2016 , 9, 2682-2719	35.4	103
252	The Bright Side of Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 4322-4334	6.4	100
251	Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24314-24323	3.8	38
250	Modifications of an unsymmetrical phthalocyanine: Towards stable blue dyes for dye-sensitized solar cells. <i>Journal of Porphyrins and Phthalocyanines</i> , 2016 , 20, 1207-1216	1.8	3
249	Charge Carrier Generation and Extraction in Hybrid Polymer/Quantum Dot Solar Cells. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14356-14364	3.8	3
248	Exploiting Photo- and Electroluminescence Properties of FIrpic Organic Crystals. <i>Inorganic Chemistry</i> , 2016 , 55, 6532-8	5.1	5
247	[1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells. <i>Journal of Organic Chemistry</i> , 2016 , 81, 3235-45	4.2	42
246	UV Reduced Graphene Oxide PEDOT:PSS Nanocomposite for Perovskite Solar Cells. <i>IEEE Nanotechnology Magazine</i> , 2016 , 15, 725-730	2.6	18
245	Synthesis and characterization of a new series of dibenzofulvene based organic dyes for DSSCs. <i>Dyes and Pigments</i> , 2016 , 130, 79-89	4.6	18
244	MetalBrganic green dye: chemical and physical insight into a modified Zn-benzoporphyrin for dye-sensitized solar cells. <i>RSC Advances</i> , 2016 , 6, 5123-5133	3.7	10

(2015-2016)

243	Chromogenic device for cystic fibrosis precocious diagnosis: A point of carelbool for sweat test. <i>Sensors and Actuators B: Chemical</i> , 2016 , 225, 474-480	8.5	14
242	Automatic Echographic Detection of Halloysite Clay Nanotubes in a Low Concentration Range. <i>Nanomaterials</i> , 2016 , 6,	5.4	4
241	In Vitro Cytotoxicity of Halloysite Clay Nanotubes is Effectively Prevented by Surface Coating with PEG 2016 ,		1
240	The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots. <i>Angewandte Chemie</i> , 2016 , 128, 6740-6745	3.6	2
239	The Dynamic Organic/Inorganic Interface of Colloidal PbS Quantum Dots. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6628-33	16.4	43
238	Fully Vapor-Deposited Heterostructured Light-Emitting Diode Based on Organo-Metal Halide Perovskite. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500325	6.4	32
237	Twist of generalized skyrmions and spin vortices in a polariton superfluid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 14926-14931	11.5	32
236	Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. <i>ACS Nano</i> , 2016 , 10, 11360-11368	16.7	47
235	Analytical and preparative enantioseparation and main chiroptical properties of Iridium(III) bis(4,6-difluorophenylpyridinato)picolinato. <i>Journal of Chromatography A</i> , 2016 , 1467, 335-346	4.5	27
234	Surface Coating Highly Improves Cytocompatibility of Halloysite Nanotubes: A Metabolic and Ultrastructural Study. <i>IEEE Nanotechnology Magazine</i> , 2016 , 15, 770-774	2.6	14
233	Molecular engineering of largely Extended metal-free sensitizers containing benzothiadiazole units: Approaching 10% efficiency dye-sensitized solar cells using iodine-based electrolytes. <i>Dyes and Pigments</i> , 2016 , 131, 282-292	4.6	11
232	Free-standing micropatternable nanocomposites as efficient colour converting filters for light emitting devices. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 5001-5009	7.1	5
231	A series of diphenylamine-fluorenone derivatives as potential fluorescent probes for neuroblastoma cell staining. <i>Tetrahedron</i> , 2016 , 72, 2920-2928	2.4	13
230	Engineering TiO2/Perovskite Planar Heterojunction for Hysteresis-Less Solar Cells. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1600493	4.6	21
229	Growing perovskite into polymers for easy-processable optoelectronic devices. <i>Scientific Reports</i> , 2015 , 5, 7725	4.9	65
228	Role of Polymer in Hybrid Polymer/PbS Quantum Dot Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 14972-14979	3.8	40
227	Perovskite photovoltachromic cells for building integration. <i>Energy and Environmental Science</i> , 2015 , 8, 1578-1584	35.4	102
226	Implantable Neurorecording Sensing System: Wireless Transmission of Measurements. <i>IEEE Sensors Journal</i> , 2015 , 15, 2603-2613	4	5

225	Beneficial Role of a Bulky Donor Moiety in Extended Organic Dyes for Mesoscopic TiO2 Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6956-6965	3.8	6
224	Sustainability of Organic Dye-Sensitized Solar Cells: The Role of Chemical Synthesis. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 770-777	8.3	40
223	Design and synthesis of fluorenone-based dyes: two-photon excited fluorescent probes for imaging of lysosomes and mitochondria in living cells. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3315-33	3 73 3	42
222	Exciton-Plasmon Coupling Enhancement via Metal Oxidation. ACS Nano, 2015, 9, 9691-9	16.7	36
221	Texture of MAPbI3 Layers Assisted by Chloride on Flat TiO2 Substrates. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19808-19816	3.8	32
220	Multiscale morphology design of hybrid halide perovskites through a polymeric template. <i>Nanoscale</i> , 2015 , 7, 18956-63	7.7	67
219	Ultrastrong light-matter coupling in electroluminescent organic microcavities. <i>Applied Materials Today</i> , 2015 , 1, 33-36	6.6	14
218	Implications of TiO2 surface functionalization on polycrystalline mixed halide perovskite films and photovoltaic devices. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20811-20818	13	26
217	mRNA delivery using non-viral PCL nanoparticles. <i>Biomaterials Science</i> , 2015 , 3, 144-51	7.4	32
216	Coupled delivery of imatinib mesylate and doxorubicin with nanoscaled polymeric vectors for a sustained downregulation of BCR-ABL in chronic myeloid leukemia. <i>Biomaterials Science</i> , 2015 , 3, 361-7	2 ^{7.4}	7
215	Thiophene-based fluorescent probes with low cytotoxicity and high photostability for lysosomes in living cells. <i>Biochimica Et Biophysica Acta - General Subjects</i> , 2015 , 1850, 385-92	4	12
214	Sustained anti-BCR-ABL activity with pH responsive imatinib mesylate loaded PCL nanoparticles in CML cells. <i>MedChemComm</i> , 2015 , 6, 212-221	5	12
213	Efficient, Green Non-Aqueous Microwave-Assisted Synthesis of Anatase TiO2 and Pt Loaded TiO2 Nanorods with High Photocatalytic Performance. <i>Nanomaterials and Nanotechnology</i> , 2015 , 5, 31	2.9	6
212	Dexamethasone delivery with coated calcium carbonate microcubes for sustained growth of osteoblasts. <i>Rendiconti Lincei</i> , 2015 , 26, 239-244	1.7	1
211	On the Li Intercalation Kinetics in Tree-like WO3 Electrodes and Their Implementation in Fast Switchable Electrochromic Devices. <i>Advanced Optical Materials</i> , 2015 , 3, 1614-1622	8.1	26
210	Enhanced Photocatalytic Activity of Pure Anatase Tio2 and Pt-Tio2 Nanoparticles Synthesized by Green Microwave Assisted Route. <i>Materials Research</i> , 2015 , 18, 473-481	1.5	59
209	Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Science Advances, 2015, 1, e15008	017 4.3	42
208	Polarization shaping of Poincar[beams by polariton oscillations. <i>Light: Science and Applications</i> , 2015 , 4, e350-e350	16.7	37

(2014-2015)

207	Nanoscale Characterization and Unexpected Photovoltaic Behavior of Low Band Gap Sulfur-Overrich-Thiophene/Benzothiadiazole Decamers and Polymers. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 27200-27211	3.8	16
206	Biocompatible and biodegradable fluorescent microfibers physiologically secreted by live cells upon spontaneous uptake of thiophene fluorophore. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 151-158	7-3	11
205	Molecular-Level Switching of Polymer/Nanocrystal Non-Covalent Interactions and Application in Hybrid Solar Cells. <i>Advanced Functional Materials</i> , 2015 , 25, 111-119	15.6	47
204	Unconventional tailorable patterning by solvent-assisted surface-tension-driven lithography. <i>Journal of Colloid and Interface Science</i> , 2015 , 446, 44-52	9.3	3
203	Facile preparation of TiO2Bolyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity. <i>Applied Surface Science</i> , 2015 , 331, 292-298	6.7	32
202	NiO/MAPbI(3-x)Clx/PCBM: a model case for an improved understanding of inverted mesoscopic solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 4283-9	9.5	52
201	Effect of lithium intercalation on the photovoltaic performances of photovoltachromic cells. <i>Progress in Photovoltaics: Research and Applications</i> , 2015 , 23, 290-301	6.8	6
200	"Darker-than-black" PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1875-86	16.4	121
199	Synthesis of Reduced Graphite Oxide by a Novel Green Process Based on UV Light Irradiation. <i>Science of Advanced Materials</i> , 2015 , 7, 2445-2451	2.3	8
198	Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1889-1894	35.4	137
197	Superhydrophobic fabrics for oilwater separation through a diamond like carbon (DLC) coating. Journal of Materials Chemistry A, 2014 , 2, 6781-6789	13	143
196	Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. <i>Nano Letters</i> , 2014 , 14, 2168-74	11.5	182
195	Polymorphism in Crystalline Microfibers of Achiral Octithiophene: The Effect on Charge Transport, Supramolecular Chirality and Optical Properties. <i>Advanced Functional Materials</i> , 2014 , 24, 4943-4951	15.6	19
194	Room-temperature treatments for all-inorganic nanocrystal solar cell devices. <i>Thin Solid Films</i> , 2014 , 560, 44-48	2.2	4
193	Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. <i>Cellulose</i> , 2014 , 21, 741-756	5.5	69
192	Laser fluence and exposure time effects on optoacoustic signal from gold nanorods for enhanced medical imaging 2014 ,		1
191	New organic dyes based on a dibenzofulvene bridge for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2014 , 2, 14181-14188	13	25
190	Room temperature Bloch surface wave polaritons. <i>Optics Letters</i> , 2014 , 39, 2068-71	3	24

189	Selective synthesis of TiO2 nanocrystals with morphology control with the microwave-solvothermal method. <i>CrystEngComm</i> , 2014 , 16, 1817	3.3	22
188	A colour tunable microcavity by weak-to-strong coupling regime transition through a light-switchable material. <i>Chemical Communications</i> , 2014 , 50, 1122-4	5.8	3
187	3D Photoelectrode for Dye Solar Cells Realized by Laser Micromachining of Photosensitive Glass. Journal of Physical Chemistry C, 2014 , 118, 17100-17107	3.8	4
186	Three-dimensional self-assembly of networked branched TiOIhanocrystal scaffolds for efficient room-temperature processed depleted bulk heterojunction solar cells. <i>ACS Applied Materials & Interfaces</i> , 2014 , 6, 5026-33	9.5	6
185	Enhancing dye-sensitized solar cell performances by molecular engineering: highly efficient Extended organic sensitizers. <i>ChemSusChem</i> , 2014 , 7, 2659-69	8.3	23
184	Polariton-Induced Enhanced Emission from an Organic Dye under the Strong Coupling Regime. <i>Advanced Optical Materials</i> , 2014 , 2, 1076-1081	8.1	33
183	Elusive Presence of Chloride in Mixed Halide Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3532-8	6.4	160
182	Influence of electrotaxis on cell behaviour. <i>Integrative Biology (United Kingdom)</i> , 2014 , 6, 817-30	3.7	92
181	Exploring LightMatter Interaction Phenomena under Ultrastrong Coupling Regime. <i>ACS Photonics</i> , 2014 , 1, 1042-1048	6.3	115
180	Ultrathin TiO(B) nanorods with superior lithium-ion storage performance. <i>ACS Applied Materials & Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS Applied Materials ACS Applied Materials ACS Applied Materials (ACS Applied Materials ACS ACS APPLIED ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	79
179	Shape and morphology effects on the electronic structure of TiO(2) nanostructures: from nanocrystals to nanorods. <i>ACS Applied Materials & Date of the English and Particles</i> , 2014, 6, 2471-8	9.5	20
178	Smart windows for building integration: a new architecture for photovoltachromic devices. <i>ACS Applied Materials & District Applied & D</i>	9.5	46
177	TiO 2 nanorod-based photoelectrodes for dye solar cells with tunable morphological features. <i>Thin Solid Films</i> , 2014 , 568, 122-130	2.2	6
176	Uptake of imatinib-loaded polyelectrolyte complexes by BCR-ABL(+) cells: a long-acting drug-delivery strategy for targeting oncoprotein activity. <i>Nanomedicine</i> , 2014 , 9, 2087-98	5.6	10
175	MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1667, 41		2
174	Enzyme-responsive multifunctional surfaces for controlled uptake/release of (bio)molecules. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 123, 89-95	6	3
173	Relaxation oscillations in the formation of a polariton condensate. <i>Physical Review Letters</i> , 2014 , 112, 113602	7.4	28
172	Automatic image detection of Halloysite clay Nanotubes as a future ultrasound theranostic agent for tumoral cell targeting and treatment 2014 ,		3

(2013-2014)

171	Catalytic self-propulsion of supramolecular capsules powered by polyoxometalate cargos. <i>Chemistry - A European Journal</i> , 2014 , 20, 10910-4	4.8	28
170	Imaging, photophysical properties and DFT calculations of manganese blue (barium manganate(VI) sulphate)a modern pigment. <i>Chemical Communications</i> , 2014 , 50, 15297-300	5.8	10
169	Ultrafast Control and Rabi Oscillations of Polaritons. <i>Physical Review Letters</i> , 2014 , 113, 226401	7.4	53
168	Investigating Charge Dynamics in Halide Perovskite Sensitized Mesostructured Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1667, 7		2
167	Surface chemistry of arenethiolate-capped PbS quantum dots and application as colloidally stable photovoltaic ink. <i>Thin Solid Films</i> , 2014 , 560, 2-9	2.2	7
166	Photovoltachromic device with a micropatterned bifunctional counter electrode. <i>ACS Applied Materials & Materials </i>	9.5	35
165	Synthesis of Ultrafine Anatase Titanium Dioxide (TiO2) Nanocrystals by the Microwave-Solvothermal Method. <i>Journal of Nanoengineering and Nanomanufacturing</i> , 2014 , 4, 28-32		10
164	Controllable One-Pot Synthesis of Anatase TiO2 Nanorods with the Microwave-Solvothermal Method. <i>Science of Advanced Materials</i> , 2014 , 6, 1668-1675	2.3	13
163	A new electrical model for the analysis of a partially shaded dye-sensitized solar cells module. <i>Progress in Photovoltaics: Research and Applications</i> , 2013 , 21, 1520-1530	6.8	8
162	FluorineEhiophene-substituted organic dyes for dye sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11909	13	23
161	Spray coating fabrication of organic solar cells bypassing the limit of orthogonal solvents. <i>Applied Physics Letters</i> , 2013 , 102, 203307	3.4	9
160	Visual comfort assessment of smart photovoltachromic windows. <i>Energy and Buildings</i> , 2013 , 65, 137-14	4 5	40
159	High efficiency ITO-free flexible white organic light-emitting diodes based on multi-cavity technology. <i>Organic Electronics</i> , 2013 , 14, 2840-2846	3.5	26
158	Random laser emission from a paper-based device. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8128	7.1	42
157	MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties. <i>Chemistry of Materials</i> , 2013 , 25, 4613-4618	9.6	658
156	All-donor poly(arylene-ethynylene)s containing anthracene and silole-based units: Synthesis, electronic, and photovoltaic properties. <i>Journal of Polymer Science Part A</i> , 2013 , 51, 4860-4872	2.5	12
155	Pulsed laser deposition of a dense and uniform Au nanoparticles layer for surface plasmon enhanced efficiency hybrid solar cells. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	17
154	Highly efficient photoanodes for dye solar cells with a hierarchical meso-ordered structure. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16949-55	3.6	4

153	Physiological formation of fluorescent and conductive protein microfibers in live fibroblasts upon spontaneous uptake of biocompatible fluorophores. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 1057	r- ह ेह	11
152	Nonhydrolytic Route to Boron-Doped TiO2 Nanocrystals. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 364-374	2.3	19
151	Influence of variable substrate geometry on wettability and cellular responses. <i>Journal of Colloid and Interface Science</i> , 2013 , 394, 582-9	9.3	22
150	Electrochemical Assessment of the Band-Edge Positioning in Shape-Tailored TiO2-Nanorod-Based Photoelectrodes for Dye Solar Cells. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 2574-2583	3.8	27
149	Fabrication of flexible all-inorganic nanocrystal solar cells by room-temperature processing. <i>Energy and Environmental Science</i> , 2013 , 6, 1565	35.4	29
148	Anchoring stability and photovoltaic properties of new D(-EA)2 dyes for dye-sensitized solar cell applications. <i>Dyes and Pigments</i> , 2013 , 98, 221-231	4.6	60
147	Colloidal Arenethiolate-Capped PbS Quantum Dots: Optoelectronic Properties, Self-Assembly, and Application in Solution-Cast Photovoltaics. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 13305-13317	3.8	91
146	Shape-tailored TiO2 nanocrystals with synergic peculiarities as building blocks for highly efficient multi-stack dye solar cells. <i>Energy and Environmental Science</i> , 2013 , 6, 1791	35.4	31
145	Random laser from engineered nanostructures obtained by surface tension driven lithography. Laser and Photonics Reviews, 2013 , 7, 432-438	8.3	15
144	Aryl 5-substitution of a phenyl-pyridine based ligand as a viable way to influence the opto-electronic properties of bis-cyclometalated Ir(III) heteroleptic complexes. <i>Dalton Transactions</i> , 2013 , 42, 8939-50	4.3	10
143	Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized diamond-like carbon coatings for self-cleaning applications. <i>Langmuir</i> , 2013 , 29, 2775-83	4	76
142	Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 586-96	4.9	23
141	Spectroscopic and Morphological Studies of Metal-Organic and Metal-Free Dyes onto Titania Films for Dye-Sensitized Solar Cells. <i>International Journal of Photoenergy</i> , 2013 , 2013, 1-11	2.1	4
140	A brief review of surface-functionalized cotton fabrics. <i>Surface Innovations</i> , 2013 , 1, 140-156	1.9	33
139	Graded vertical phase separation of donor/acceptor species for polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 100, 147-152	6.4	32
138	Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials. <i>Integrative Biology (United Kingdom)</i> , 2012 , 4, 1299-309	3.7	8
137	Control and ultrafast dynamics of a two-fluid polariton switch. <i>Physical Review Letters</i> , 2012 , 109, 26640	07.4	53
136	Microfluidic motion for a direct investigation of solvent interactions with PDMS microchannels. <i>Microfluidics and Nanofluidics</i> , 2012 , 13, 399-409	2.8	11

(2011-2012)

135	Highly stable gel electrolytes for dye solar cells based on chemically engineered polymethacrylic hosts. <i>Chemical Communications</i> , 2012 , 48, 3109-11	5.8	14
134	An Insight into the Potential of Random Poly(heteroarylenelinylene)s as Donor Materials in Bulk Heterojunction Solar Cells. <i>Macromolecules</i> , 2012 , 45, 6396-6404	5.5	8
133	Bulk Heterojunction versus Diffused Bilayer: The Role of Device Geometry in Solution p-Doped Polymer-Based Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1908-15	6.4	49
132	The influence of polydimethylsiloxane curing ratio on capillary pressure in microfluidic devices. <i>Applied Surface Science</i> , 2012 , 258, 8032-8039	6.7	10
131	Dynamic Microscopy Study of Ultrafast Charge Transfer in a Hybrid P3HT/Hyperbranched CdSe Nanoparticle Blend for Photovoltaics. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 517-23	6.4	38
130	Light energy harvesting with nano-dipoles. <i>Nanoscale</i> , 2012 , 4, 1728-33	7.7	5
129	Cell self-patterning on uniform PDMS-surfaces with controlled mechanical cues. <i>Integrative Biology</i> (United Kingdom), 2012 , 4, 228-36	3.7	15
128	Synthesis and Photovoltaic Properties of Regioregular Head-to-Head Substituted Thiophene Hexadecamers. <i>Macromolecules</i> , 2012 , 45, 8284-8291	5.5	20
127	Organic photovoltaic devices with colloidal TiO2 nanorods as key functional components. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 3987-95	3.6	21
126	Monodispersed vs. polydispersed systems for bulk heterojunction solar cells: the case of dithienopyrrole/anthracene based materials. <i>Journal of Materials Chemistry</i> , 2012 , 22, 19752		26
125	Smart Microfluidics: The Role of Stimuli- Responsive Polymers in Microfluidic Devices 2012 ,		3
124	Tuning of the charge and energy transfer in ternary CdSe/poly(3-methylthiophene)/poly(3-hexylthiophene) nanocomposite system. <i>Colloid and Polymer Science</i> , 2012 , 290, 1145-1156	2.4	8
123	A free-standing aligned-carbon-nanotube/nanocomposite foil as an efficient counter electrode for dye solar cells. <i>Energy and Environmental Science</i> , 2012 , 5, 8377	35.4	25
122	Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings. <i>Optics Express</i> , 2012 , 20 Suppl 4, A476-88	3.3	12
121	pH controlled staining of CD4(+) and CD19(+) cells within functionalized microfluidic channel. <i>Biomicrofluidics</i> , 2012 , 6, 44107	3.2	6
120	Improved photovoltaic performances by post-deposition acidic treatments on tetrapod shaped colloidal nanocrystal solids. <i>Nanotechnology</i> , 2012 , 23, 305403	3.4	11
119	Thiophene Fluorophores for Cellular Staining: Synthesis and Application. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2011 , 186, 1074-1084	1	5
118	Nonenzymatic ligation of an RNA oligonucleotide analyzed by atomic force microscopy. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 6296-303	3.4	9

117	Hyperbranched anatase TiO2 nanocrystals: nonaqueous synthesis, growth mechanism, and exploitation in dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19216-39	16.4	106
116	A successful chemical strategy to induce oligothiophene self-assembly into fibers with tunable shape and function. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8654-61	16.4	75
115	High-quality photoelectrodes based on shape-tailored TiO2 nanocrystals for dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13371		32
114	Live-cell-permeant thiophene fluorophores and cell-mediated formation of fluorescent fibrils. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17777-85	16.4	49
113	Flexible carbon nanotube-based composite plates as efficient monolithic counter electrodes for dye solar cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 3625-32	9.5	39
112	All-optical control of the quantum flow of a polariton condensate. <i>Nature Photonics</i> , 2011 , 5, 610-614	33.9	120
111	Low band gap poly(1,4-arylene-2,5-thienylene)s with benzothiadiazole units: Synthesis, characterization and application in polymer solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 3490-3503	6.4	23
110	Ultra lightweight PMMA-based composite plates with robust super-hydrophobic surfaces. <i>Journal of Colloid and Interface Science</i> , 2011 , 363, 668-75	9.3	9
109	The suzukifieck polymerization as a tool for the straightforward obtainment of poly(fluorenylene-vinylene) sensitizers for dye-sensitized solar cells. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 842-847	2.5	9
108	Magnetic/Silica Nanocomposites as Dual-Mode Contrast Agents for Combined Magnetic Resonance Imaging and Ultrasonography. <i>Advanced Functional Materials</i> , 2011 , 21, 2548-2555	15.6	70
107	Highly efficient smart photovoltachromic devices with tailored electrolyte composition. <i>Energy and Environmental Science</i> , 2011 , 4, 2567	35.4	44
106	A Novel pH-Responsive Nanogel for the Controlled Uptake and Release of Hydrophobic and Cationic Solutes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16347-16353	3.8	49
105	Synthesis, characterization and photovoltaic properties of random poly(arylene-vinylene)s containing benzothiadiazole. <i>Polymer</i> , 2011 , 52, 2740-2746	3.9	8
104	Cell Uptake and Validation of Novel PECs for Biomedical Applications. <i>Journal of Drug Delivery</i> , 2011 , 203676	2.3	9
103	Organic Dyes Containing A Triple Bond Spacer for Dye Sensitized Solar Cells: A Combined Experimental and Theoretical Investigation. <i>Current Organic Chemistry</i> , 2011 , 15, 3535-3543	1.7	8
102	Novel Preparation Method of TiO2-Nanorod-Based Photoelectrodes for Dye-Sensitized Solar Cells with Improved Light-Harvesting Efficiency. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4228-4236	3.8	93
101	Imatinib-loaded polyelectrolyte microcapsules for sustained targeting of BCR-ABL+ leukemia stem cells. <i>Nanomedicine</i> , 2010 , 5, 419-31	5.6	31
100	Pure white hybrid light-emitting device with color rendering index higher than 90. <i>Optics Letters</i> , 2010 , 35, 616-8	3	18

99	Full spin-coated multilayer structure hybrid light-emitting devices. <i>Applied Physics Letters</i> , 2010 , 97, 103	13047	5
98	Monodispersed molecular donors for bulk hetero-junction solar cells: from molecular properties to device performances. <i>Chemical Communications</i> , 2010 , 46, 6273-5	5.8	12
97	Surfactant-free synthesis of pure anatase TiO2 nanorods suitable for dye-sensitized solar cells. Journal of Materials Chemistry, 2010 , 20, 7248		51
96	Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. <i>Nanoscale</i> , 2010 , 2, 2171-9	7.7	28
95	Bicolor electroluminescent pixels from single active molecular material. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 484-90	9.5	4
94	Reversible wettability of hybrid organic/inorganic surfaces of systems upon light irradiation/storage cycles. <i>International Journal of Nanomanufacturing</i> , 2010 , 6, 312	0.7	1
93	Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. <i>Investigative Radiology</i> , 2010 , 45, 715-24	10.1	69
92	Shaping white light through electroluminescent fully organic coupled microcavities. <i>Advanced Materials</i> , 2010 , 22, 4696-700	24	17
91	Nanogels of poly(acrylic acid): Uptake and release behavior with fluorescent oligothiophene-labeled bovine serum albumin. <i>Journal of Applied Polymer Science</i> , 2010 , 116, NA-NA	2.9	5
90	Charge recombination reduction in dye-sensitized solar cells by means of an electron beam-deposited TiO2 buffer layer between conductive glass and photoelectrode. <i>Thin Solid Films</i> , 2010 , 518, 7147-7151	2.2	29
89	Multifunctional bioinspired sol-gel coatings for architectural glasses. <i>Building and Environment</i> , 2010 , 45, 1233-1243	6.5	66
88	White light-emitting devices based on the combined emission from red CdSe/ZnS quantum dots, green phosphorescent, and blue fluorescent organic molecules. <i>Applied Physics Letters</i> , 2009 , 94, 24350	<i>∂</i> ·4	34
87	Laser action from a sugar-threaded polyrotaxane. <i>Applied Physics Letters</i> , 2009 , 95, 031108	3.4	21
86	Improved photovoltaic performance of bilayer heterojunction photovoltaic cells by triplet materials and tetrapod-shaped colloidal nanocrystals doping. <i>Applied Physics Letters</i> , 2009 , 95, 043101	3.4	19
85	Synthesis of Poly(acrylic acid) Nanogels and Application in Loading and Release of an Oligothiophene Fluorophore and Its Bovine Serum Albumin Conjugate. <i>Macromolecular Symposia</i> , 2009 , 281, 69-76	0.8	14
84	Reversibly Light-Switchable Wettability of Hybrid Organic/Inorganic Surfaces With Dual Micro-/Nanoscale Roughness. <i>Advanced Functional Materials</i> , 2009 , 19, 1149-1157	15.6	106
83	Mechanical Gradient Cues for Guided Cell Motility and Control of Cell Behavior on Uniform Substrates. <i>Advanced Functional Materials</i> , 2009 , 19, 2961-2968	15.6	49
82	High Electron Mobility and Ambient Stability in Solution-Processed Perylene-Based Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2009 , 21, 1573-1576	24	131

81	Improved Photovoltaic Performance of Heterostructured Tetrapod-Shaped CdSe/CdTe Nanocrystals Using C60 Interlayer. <i>Advanced Materials</i> , 2009 , 21, 4461-4466	24	55
80	Self-organization, optical, and electrical properties of alpha-quinquethiophene-dinucleotide conjugates. <i>Chemistry - A European Journal</i> , 2009 , 15, 1876-85	4.8	19
79	Raman spectra of poly(p-phenylenevinylene)s with fluorinated vinylene units: evidence of inter-ring distortion. <i>ChemPhysChem</i> , 2009 , 10, 1284-90	3.2	18
78	Rectification in supramolecular zinc porphyrin/fulleropyrrolidine dyads self-organized on gold(111). <i>ChemPhysChem</i> , 2009 , 10, 2633-41	3.2	11
77	Random poly(fluorenylene-vinylene)s containing 3,7-Dibenzothiophene-5,5-dioxide units: Synthesis, photophysical, and electroluminescence properties. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 2093-2104	2.5	23
76	Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing. <i>Langmuir</i> , 2009 , 25, 6357-62	4	275
75	Engineering transfer of micro- and nanometer-scale features by surface energy modification. <i>Langmuir</i> , 2009 , 25, 7025-31	4	22
74	Polarized light emitting diode by long-range nanorod self-assembling on a water surface. <i>ACS Nano</i> , 2009 , 3, 1506-12	16.7	106
73	Microwave-assisted synthesis of thiophene fluorophores, labeling and multilabeling of monoclonal antibodies, and long lasting staining of fixed cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 10892-900	16.4	61
	,		
72	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101	3.6	10
72 71		3.6	10
	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101		208
71	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101 Ultrafast Photonics in Polymer Nanostructures 2009 , 251-310	12 _‡ 8	
71 70	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101 Ultrafast Photonics in Polymer Nanostructures 2009 , 251-310 Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. <i>Langmuir</i> , 2008 , 24, 271 Very Long Operational Lifetime at High Initial Luminance of Deep Red Phosphorescent Organic	12 _‡ 8	208
71 70 69	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101 Ultrafast Photonics in Polymer Nanostructures 2009 , 251-310 Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. <i>Langmuir</i> , 2008 , 24, 271 Very Long Operational Lifetime at High Initial Luminance of Deep Red Phosphorescent Organic Light-Emitting Diodes With Double Emission Layers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 2105-2 Influence of chemistry and topology effects on superhydrophobic CF(4)-plasma-treated	12 ₅ 8 2 107	208
71 70 69 68	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101 Ultrafast Photonics in Polymer Nanostructures 2009 , 251-310 Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. <i>Langmuir</i> , 2008 , 24, 271 Very Long Operational Lifetime at High Initial Luminance of Deep Red Phosphorescent Organic Light-Emitting Diodes With Double Emission Layers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 2105-2 Influence of chemistry and topology effects on superhydrophobic CF(4)-plasma-treated poly(dimethylsiloxane) (PDMS). <i>Langmuir</i> , 2008 , 24, 1833-43 Influencing the Spectral Stability and the Electroluminescence Behavior of New Blue-Emitting Bifluorene-Based Materials by the 7,7Efunctionalization of the Core. <i>Journal of Physical Chemistry C</i>	12 ₄ 8 2 107 4 3.8	208 6 72
71 70 69 68 67	Smart surfaces for pH controlled cell staining. <i>Soft Matter</i> , 2009 , 5, 4101 Ultrafast Photonics in Polymer Nanostructures 2009 , 251-310 Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. <i>Langmuir</i> , 2008 , 24, 271 Very Long Operational Lifetime at High Initial Luminance of Deep Red Phosphorescent Organic Light-Emitting Diodes With Double Emission Layers. <i>IEEE Photonics Technology Letters</i> , 2008 , 20, 2105-2 Influence of chemistry and topology effects on superhydrophobic CF(4)-plasma-treated poly(dimethylsiloxane) (PDMS). <i>Langmuir</i> , 2008 , 24, 1833-43 Influencing the Spectral Stability and the Electroluminescence Behavior of New Blue-Emitting Bifluorene-Based Materials by the 7,7EFunctionalization of the Core. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 7005-7014 Influence of Keto Groups on the Optical, Electronic, and Electroluminescent Properties of Random	12 ₄ 8 2 107 4 3.8	208 6 72

(2005-2008)

63	White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer. <i>Small</i> , 2008 , 4, 2143-7	11	52
62	Random terpolymers for electroluminescent devices: Synthesis and characterization of new cyano-containing poly(fluorenylene-vinylene)s. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 6051-6063	2.5	25
61	Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers. <i>Advanced Materials</i> , 2008 , 20, 1886-1891	24	82
60	Synthesis of bifluorene-based molecular materials: effect of C-9 spirocyclohexane functionalization and end-group tailoring. <i>Tetrahedron</i> , 2008 , 64, 8738-8745	2.4	
59	Highly efficient photometrics tailoring by means of optimized bell-shaped lens arrays 2008,		2
58	Blue light emitting diodes based on fluorescent CdSe I nS nanocrystals. <i>Applied Physics Letters</i> , 2007 , 90, 051106	3.4	76
57	Sequential Growth of Magic-Size CdSe Nanocrystals. <i>Advanced Materials</i> , 2007 , 19, 548-552	24	259
56	Synthesis and optoelectronic properties of a red emitting branched polymer containing V-shaped oligothiophene-S,S-dioxides as repeating units. <i>Tetrahedron</i> , 2007 , 63, 11386-11390	2.4	15
55	Microfluidic behaviour of perfluoropolyether fluids in poly(dimethylsiloxane) micro-channels. Journal of Fluorine Chemistry, 2007 , 128, 1335-1339	2.1	3
54	White-light-emitting diodes using semiconductor nanocrystals. <i>Mikrochimica Acta</i> , 2007 , 159, 207-215	5.8	45
53	Ultrafast optical switching in distributed feedback polymer laser. <i>Applied Physics Letters</i> , 2007 , 91, 1911	0,84	24
52	Fabrication of Molecular Micro-NanoStructures by Surface-Tension-Driven Technique. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1002, 1		
51	Synthesis, Spectral Stability, and Electroluminescent Properties of Random Poly(2,7-fluorenylenevinylene-co-3,6-carbazolylenevinylene) Obtained by a SuzukiHeck Cascade Reaction. <i>Macromolecules</i> , 2007 , 40, 4865-4873	5.5	31
50	Bright White-Light-Emitting Device from Ternary Nanocrystal Composites. <i>Advanced Materials</i> , 2006 , 18, 2545-2548	24	189
49	High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. <i>Applied Physics Letters</i> , 2006 , 88, 181108	3.4	14
48	Multifunctional platinum porphyrin dendrimers as emitters in undoped phosphorescent based light emitting devices. <i>Applied Physics Letters</i> , 2006 , 89, 061125	3.4	38
47	Bright oligothiophene N-succinimidyl esters for efficient fluorescent labeling of proteins and oligonucleotides. <i>Bioconjugate Chemistry</i> , 2006 , 17, 58-67	6.3	52
46	Surface morphology and optical properties of thin films of thiophene-based binary blends. <i>Journal of Applied Physics</i> , 2005 , 98, 013512	2.5	1

45	Microfluidic motion for a direct investigation of the structural dynamics of glass-forming liquids. <i>Analytical Chemistry</i> , 2005 , 77, 591-5	7.8	12
44	Emission properties of printed organic semiconductor lasers. <i>Optics Letters</i> , 2005 , 30, 260-2	3	15
43	First-order imprinted organic distributed feedback lasers. Synthetic Metals, 2005, 153, 237-240	3.6	19
42	White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter. <i>Journal of Applied Physics</i> , 2005 , 97, 113501	2.5	100
41	Tailoring the emission spectrum of colloidal nanocrystals by means of lithographically-imprinted hybrid vertical microcavities 2005 , 5840, 168		2
40	V-Shaped Thiophene-Based Oligomers with Improved Electroluminescence Properties. <i>Advanced Functional Materials</i> , 2005 , 15, 664-670	15.6	61
39	Bright White Organic Light-Emitting Devices from a Single Active Molecular Material. <i>Advanced Materials</i> , 2005 , 17, 34-39	24	239
38	Near-field spectroscopy of phase segregation in white-light-emitting blends based on low-mass molecules. <i>Applied Physics Letters</i> , 2005 , 86, 081907	3.4	4
37	A Micro-Fluidic Real-Time Monitoring of the Dynamics of Polymeric Liquids 2004, 505		
36	Room-temperature nanoimprinting on metallo-organic complexes. <i>Journal of Vacuum Science</i> & <i>Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 981		3
35	Nanoimprint lithography of chromophore molecules under high-vacuum conditions. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 185		10
34	Rigid organic molds for nanoimprint lithography by replica molding of high glass transition temperature polymers. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2004 , 22, 1759		7
33	Full organic distributed feedback cavities based on a soluble electroluminescent oligothiophene. <i>Physical Review B</i> , 2004 , 70,	3.3	10
32	Soft molding lithography of conjugated polymers. <i>Applied Physics Letters</i> , 2004 , 84, 1365-1367	3.4	37
31	Poly(Brinyl-Balkyloligothiophene) Side-Chain Polymers. Synthesis, Fluorescence, and Morphology. <i>Macromolecules</i> , 2004 , 37, 5692-5702	5.5	52
30	Self-assembled extracellular matrix protein networks by microcontact printing. <i>Biomaterials</i> , 2004 , 25, 1349-53	15.6	36
29	Solid-state laser devices based on an optically-confined oligothiophene-S,S-dioxide. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2004 , 1, 458-461		2
28	Room-Temperature Nanoimprint Lithography of Non-thermoplastic Organic Films. <i>Advanced Materials</i> , 2004 , 16, 525-529	24	79

(2001-2004)

27	Rapid soft lithography by bottom-up enhanced capillarity. <i>Langmuir</i> , 2004 , 20, 4802-4	4	10
26	Controlling non-radiative energy transfer in organic binary blends: a route towards colour tunability and white emission from single-active-layer light-emitting devices. <i>Journal Physics D: Applied Physics</i> , 2003 , 36, 2483-2486	3	13
25	New Branched Thiophene-Based Oligomers for Bright Organic Light-Emitting Devices. <i>Advanced Materials</i> , 2003 , 15, 2060-2063	24	50
24	Synthesis, single crystal X-ray structure and optical properties of 3,4-dimethyl-dithieno[2,3-b:3?,2?-d]thiophene-7,7-dioxide. <i>Tetrahedron</i> , 2003 , 59, 5083-5090	2.4	7
23	Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. <i>Applied Physics Letters</i> , 2003 , 82, 334-336	3.4	104
22	Solid-state supramolecular organization, established directly from powder diffraction data, and photoluminescence efficiency of rigid-core oligothiophene-S,S-dioxides. <i>Journal of the American Chemical Society</i> , 2003 , 125, 12277-83	16.4	61
21	Bright oligothiophene-based light emitting diodes. Synthetic Metals, 2003, 139, 671-673	3.6	38
20	White emission from organic light emitting diodes based on energy down-convertion mechanisms. <i>Synthetic Metals</i> , 2003 , 139, 675-677	3.6	31
19	Nanostructuring poly-[2-methoxy-5-(2?-ethyl-hexiloxy)-p-phenylenevinylene] thin films by high-temperature soft lithography. <i>Synthetic Metals</i> , 2003 , 139, 679-681	3.6	
18	Oligomer-based organic distributed feedback lasers by room-temperature nanoimprint lithography. <i>Applied Physics Letters</i> , 2003 , 83, 2545-2547	3.4	62
17	Submicron pattern transfer to binary semiconductors via micromolding in capillaries. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2002 , 20, 2248		5
16	Amplified spontaneous emission and efficient tunable laser emission from a substituted thiophene-based oligomer. <i>Applied Physics Letters</i> , 2002 , 81, 3534-3536	3.4	98
15	Structural Aspects of High-Efficiency Blue-Emitting 2,5-Bis(trimethylsilyl)thiophene-S,S-dioxide and Related Materials. <i>Journal of Solid State Chemistry</i> , 2001 , 161, 121-128	3.3	9
14	Single-mode tunable organic laser based on an electroluminescent oligothiophene. <i>Applied Physics Letters</i> , 2001 , 79, 4082-4084	3.4	39
13	White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode?. <i>Applied Physics Letters</i> , 2001 , 79, 560-562	3.4	159
12	Rigid-Core Oligothiophene-S,S-dioxides with High Photoluminescence Efficiencies Both in Solution and in the Solid State. <i>Chemistry of Materials</i> , 2001 , 13, 4112-4122	9.6	97
11	Multicolor oligothiophene-based light-emitting diodes. <i>Applied Physics Letters</i> , 2001 , 78, 1493-1495	3.4	85
10	Oligothiophene isothiocyanates as a new class of fluorescent markers for biopolymers. <i>Journal of the American Chemical Society</i> , 2001 , 123, 11600-7	16.4	72

9	Tuning Solid-State Photoluminescence Frequencies and Efficiencies of Oligomers Containing One Central Thiophene-S,S-dioxide Unit. <i>Journal of the American Chemical Society</i> , 2000 , 122, 11971-11978	16.4	134
8	New light-emitting functionalized oligothiophenes. <i>Synthetic Metals</i> , 2000 , 115, 47-49	3.6	8
7	Color engineering by modified oligothiophene blends. <i>Applied Physics Letters</i> , 2000 , 77, 2458-2460	3.4	51
6	Molecular Packing and Photoluminescence Efficiency in Odd-Membered Oligothiophene S,S-Dioxides. <i>Journal of the American Chemical Society</i> , 2000 , 122, 9006-9013	16.4	75
5	Modified Oligothiophenes with High Photo- and Electroluminescence Efficiencies. <i>Advanced Materials</i> , 1999 , 11, 1375-1379	24	93
4	High-efficiency oligothiopene-based light-emitting diodes. <i>Applied Physics Letters</i> , 1999 , 75, 439-441	3.4	107
3	Increase of charge carriers density and reduction of Hall mobilities in oxygen-plasma treated indium l inoxide anodes. <i>Applied Physics Letters</i> , 1999 , 75, 19-21	3.4	83
2	Solid-State Conformation, Molecular Packing, and Electrical and Optical Properties of Processable EMethylated Sexithiophenes. <i>Journal of the American Chemical Society</i> , 1999 , 121, 8920-8926	16.4	90
1	All Solid-State Flexible Electrochromic-Organic Light-Emitting Diode Devices on Single-Plastic Substrate for See-Through Display Technologies. <i>Advanced Materials Technologies</i> ,2100289	6.8	О