Sarah F Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632562/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. Journal of Experimental Medicine, 2011, 208, 181-193.	8.5	775
2	Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9047-9052.	7.1	371
3	Immune history profoundly affects broadly protective B cell responses to influenza. Science Translational Medicine, 2015, 7, 316ra192.	12.4	353
4	Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nature Immunology, 2019, 20, 362-372.	14.5	211
5	Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15798-15803.	7.1	203
6	Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Science Immunology, 2017, 2, .	11.9	203
7	Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13133-13138.	7.1	197
8	Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies. Science Translational Medicine, 2017, 9, .	12.4	135
9	<i>Staphylococcus aureus</i> infection induces protein A–mediated immune evasion in humans. Journal of Experimental Medicine, 2014, 211, 2331-2339.	8.5	125
10	Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host and Microbe, 2019, 25, 357-366.e6.	11.0	124
11	Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. Journal of Clinical Investigation, 2015, 125, 1255-1268.	8.2	115
12	High Preexisting Serological Antibody Levels Correlate with Diversification of the Influenza Vaccine Response. Journal of Virology, 2015, 89, 3308-3317.	3.4	112
13	Activation Dynamics and Immunoglobulin Evolution of Pre-existing and Newly Generated Human Memory B cell Responses to Influenza Hemagglutinin. Immunity, 2019, 51, 398-410.e5.	14.3	107
14	Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. MBio, 2019, 10, .	4.1	88
15	Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after H7N9 immunization in humans. Science Immunology, 2017, 2, .	11.9	84
16	Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nature Medicine, 2022, 28, 383-391.	30.7	65
17	<i>Plasmodium falciparum</i> –specific IgM B cells dominate in children, expand with malaria, and produce functional IgM. Journal of Experimental Medicine, 2021, 218, .	8.5	44
18	Accumulation of follicular CD8+ T cells in pathogenic SIV infection. Journal of Clinical Investigation, 2018, 128, 2089-2103.	8.2	43

SARAH F ANDREWS

#	Article	IF	CITATIONS
19	A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nature Communications, 2021, 12, 1722.	12.8	41
20	Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .	11.9	40
21	Glycan repositioning of influenza hemagglutinin stem facilitates the elicitation of protective cross-group antibody responses. Nature Communications, 2020, 11, 791.	12.8	36
22	Is It Possible to Develop a "Universal―Influenza Virus Vaccine?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029413.	5.5	34
23	Intranasal Live Influenza Vaccine Priming Elicits Localized B Cell Responses in Mediastinal Lymph Nodes. Journal of Virology, 2018, 92, .	3.4	30
24	Shaping a universally broad antibody response to influenza amidst a variable immunoglobulin landscape. Current Opinion in Immunology, 2018, 53, 96-101.	5.5	25
25	An avian influenza H7 DNA priming vaccine is safe and immunogenic in a randomized phase I clinical trial. Npj Vaccines, 2017, 2, 15.	6.0	24
26	Clobal analysis of B cell selection using an immunoglobulin light chain–mediated model of autoreactivity. Journal of Experimental Medicine, 2013, 210, 125-142.	8.5	22
27	Convergent Evolution in Breadth of Two VH6-1-Encoded Influenza Antibody Clonotypes from a Single Donor. Cell Host and Microbe, 2020, 28, 434-444.e4.	11.0	16
28	A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.	30.7	16
29	Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight, 2019, 4, .	5.0	15
30	T-bet+ Memory B Cells Stay in Place. Immunity, 2020, 52, 726-728.	14.3	1
31	Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure, 2022, , .	3.3	1