JÃ;n KruželÃ;k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3632536/publications.pdf

Version: 2024-02-01

759233 552781 43 732 12 26 citations h-index g-index papers 43 43 43 476 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ELECTROMAGNETIC ABSORPTION CHARACTERISTICS OF MANGANESE–ZINC FERRITE AND MULTIWALLED CARBON NANOTUBE–FILLED COMPOSITES BASED ON NBR. Rubber Chemistry and Technology, 2022, 95, 300-321.	1.2	1
2	Influence of Multiple Thermomechanical Processing of 3D Filaments Based on Polylactic Acid and Polyhydroxybutyrate on Their Rheological and Utility Properties. Polymers, 2022, 14, 1947.	4.5	4
3	Application of Sulfur and Peroxide Curing Systems for Cross-Linking of Rubber Composites Filled with Calcium Lignosulfonate. Polymers, 2022, 14, 1921.	4.5	11
4	Combined sulfur and peroxide curing systems applied in cross-linking of rubber magnets. Polymers and Polymer Composites, 2021, 29, 1155-1166.	1.9	2
5	Sulfur and peroxide curing of rubber magnetic composites with the application of zinc methacrylate. Journal of Elastomers and Plastics, 2021, 53, 123-145.	1.5	4
6	Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Advances, 2021, 3, 123-172.	4.6	174
7	Electromagnetic Interference Shielding and Physical-Mechanical Characteristics of Rubber Composites Filled with Manganese-Zinc Ferrite and Carbon Black. Polymers, 2021, 13, 616.	4.5	13
8	Crossâ€inking, mechanical, dynamical, and <scp>EMI</scp> absorption shielding effectiveness of <scp>NBR</scp> based composites filled with combination on ferrite and carbon based fillers. Polymers for Advanced Technologies, 2021, 32, 2929-2939.	3.2	3
9	Rubber Composites Able to Efficiently Shield the Electromagnetic Radiation. Macromolecular Symposia, 2021, 396, 2000274.	0.7	O
10	Mechanical, Thermal, Electrical Characteristics and EMI Absorption Shielding Effectiveness of Rubber Composites Based on Ferrite and Carbon Fillers. Polymers, 2021, 13, 2937.	4.5	7
11	Rubber magnets cured with peroxide and coagents. Journal of Elastomers and Plastics, 2020, 52, 253-270.	1.5	4
12	Low frequency electromagnetic shielding efficiency of composites based on ethylene propylene diene monomer <scp>and </scp> multiâ€walled carbon nanotubes. Polymers for Advanced Technologies, 2020, 31, 3272-3280.	3.2	7
13	Recycling possibilities of bioplastics based on PLA/PHB blends. Polymer Testing, 2020, 92, 106880.	4.8	41
14	Peroxide curing systems applied for cross-linking of rubber compounds based on SBR. Advanced Industrial and Engineering Polymer Research, 2020, 3, 120-128.	4.7	9
15	Rubber magnets based on NBR and lithium ferrite with the ability to absorb electromagnetic radiation. Polymers for Advanced Technologies, 2020, 31, 1624-1633.	3.2	6
16	Influence of dicumyl peroxide and Type I and II co-agents on cross-linking and physical–mechanical properties of rubber compounds based on NBR. Plastics, Rubber and Composites, 2020, 49, 307-320.	2.0	6
17	Cross-Linking of Rubber Matrices with Dicumyl Peroxide and Zinc Dimethacrylate. Part I: Effect of Co-Agent Content. Polymer Science - Series B, 2020, 62, 706-716.	0.8	1
18	Cross-Linking of Rubber Matrices with Dicumyl Peroxide and Zinc Dimethacrylate. Part II: Effect of Peroxide Content. Polymer Science - Series B, 2020, 62, 717-723.	0.8	0

#	Article	IF	CITATIONS
19	Barium and strontium ferrite-filled composites based on NBR and SBR. Journal of Elastomers and Plastics, 2019, 51, 421-439.	1.5	3
20	Application of Peroxide Curing Systems in Cross-Linking of Rubber Magnets Based on NBR and Barium Ferrite. Advances in Materials Science and Engineering, 2019, 2019, 1-10.	1.8	5
21	Rubber Magnetic Composites Cross-Linked with Peroxide Curing Systems. Polymer Science - Series B, 2019, 61, 865-873.	0.8	0
22	Magnetic composites based on NR and strontium ferrite. Acta Chimica Slovaca, 2019, 12, 63-69.	0.8	1
23	Thermooxidative aging of rubber composites based on NR and NBR with incorporated strontium ferrite. Journal of Elastomers and Plastics, 2018, 50, 71-91.	1.5	15
24	Crossâ€linking and properties of rubber magnetic composites cured with different curing systems. Polymers for Advanced Technologies, 2018, 29, 216-225.	3.2	6
25	Reinforcement of Rubber Magnetic Composites with Zinc Salts of Acrylic and Methacrylic Acids. Materials, 2018, 11, 2161.	2.9	3
26	Thermo-oxidative stability of rubber magnetic composites cured with sulfur, peroxide and mixed curing systems. Plastics, Rubber and Composites, 2018, 47, 324-336.	2.0	1
27	Magnetic composites prepared by incorporation of strontium ferrite into polar and nonâ€polar rubber matrices. Polymer Composites, 2017, 38, 2480-2487.	4.6	8
28	VULCANIZATION OF RUBBER COMPOUNDS WITH PEROXIDE CURING SYSTEMS. Rubber Chemistry and Technology, 2017, 90, 60-88.	1,2	101
29	Rubber composites cured with sulphur and peroxide and incorporated with strontium ferrite. Bulletin of Materials Science, 2017, 40, 223-231.	1.7	15
30	Relationship between the cross-link structure and properties of peroxide and sulfur-cured magnetic composites based on NR and NBR. Journal of Elastomers and Plastics, 2017, 49, 459-480.	1.5	15
31	Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler. Advances in Materials Science and Engineering, 2016, 2016, 1-10.	1.8	8
32	Rubber composite materials with the effects of electromagnetic shielding. Polymer Composites, 2016, 37, 2933-2939.	4.6	22
33	Sulphur and peroxide vulcanisation of rubber compounds – overview. Chemical Papers, 2016, 70, .	2.2	104
34	Peroxide vulcanization of natural rubber. Part II: effect of peroxides and co-agents. Journal of Polymer Engineering, 2015, 35, 21-29.	1.4	23
35	Influence of peroxide curing systems on the performance of natural rubber-based magnetic composites. Composite Interfaces, 2015, 22, 473-488.	2.3	8
36	Influence of mixed sulfur/peroxide curing system and thermo-oxidative ageing on the properties of rubber magnetic composites. Journal of Polymer Research, 2015, 22, 1.	2.4	12

#	Article	IF	CITATIONS
37	Investigation of strontium ferrite activity in different rubber matrices. Journal of Elastomers and Plastics, 2015, 47, 277-290.	1.5	5
38	Peroxide vulcanization of natural rubber. Part I: effect of temperature and peroxide concentration. Journal of Polymer Engineering, 2014, 34, 617-624.	1.4	40
39	Magnetic composites based on natural rubber prepared by using peroxide and sulfur curing system. Polymers for Advanced Technologies, 2014, 25, 995-1000.	3.2	8
40	Microstructure and Performance of Natural Rubber Based Magnetic Composites. Polymer-Plastics Technology and Engineering, 2014, 53, 1095-1104.	1.9	12
41	Influence of thermo-oxidative and ozone ageing on the properties of elastomeric magnetic composites. Polymer Degradation and Stability, 2012, 97, 921-928.	5.8	18
42	Elastomeric magnetic composites - physical properties and network structure. Polimery, 2012, 57, 25-32.	0.7	6
43	The effect of temperature and peroxides content on cross-linking and properties of EPDM-based rubber matrix. Journal of Elastomers and Plastics, 0, , 009524432210774.	1.5	0