Brian H Lower

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3631768/publications.pdf

Version: 2024-02-01

41 1,657 20 34
papers citations h-index g-index

41 41 41 1853 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Thermophilic Magnetotactic Bacteria from Mickey Hot Springs, an Arsenic-Rich Hydrothermal System in Oregon. ACS Earth and Space Chemistry, 2022, 6, 530-540.	1.2	7
2	Localization of Native Mms13 to the Magnetosome Chain of Magnetospirillum magneticum AMB-1 Using Immunogold Electron Microscopy, Immunofluorescence Microscopy and Biochemical Analysis. Crystals, 2021, 11, 874.	1.0	2
3	Host blood proteins as bridging ligand in bacterial aggregation as well as anchor point for adhesion in the molecular pathogenesis of Staphylococcus aureus infections. Micron, 2021, 150, 103137.	1.1	2
4	Corn and hardwood biochars affected soil microbial community and enzymeÂactivities. , 2020, 3, e20082.		6
5	Tunable self-assembly of magnetotactic bacteria: Role of hydrodynamics and magnetism. AIP Advances, 2020, 10, 015335.	0.6	4
6	Fibrinogen binding is affected by amino acid substitutions in C-terminal repeat region of fibronectin binding protein A. Scientific Reports, 2019, 9, 11619.	1.6	10
7	Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach. Biophysical Journal, 2019, 117, 1250-1257.	0.2	6
8	Force Spectroscopy of Mineral- Microbe Bonds. , 2019, , 301-316.		0
9	Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension. Physical Review Letters, 2018, 121, 188001.	2.9	18
10	Tuning bacterial hydrodynamics with magnetic fields. Physical Review E, 2017, 95, 062612.	0.8	20
11	Spatial localization of Mms6 during biomineralization of Fe ₃ O ₄ nanocrystals in <i>Magnetospirillum magneticum</i> AMB-1. Journal of Materials Research, 2016, 31, 527-535.	1.2	4
12	Collection and Enrichment of Magnetotactic Bacteria from the Environment., 2015,, 41-55.	_	1
13	Subcellular localization of the magnetosome protein MamC in the marine magnetotactic bacterium Magnetococcus marinus strain MC-1 using immunoelectron microscopy. Archives of Microbiology, 2014, 196, 481-488.	1.0	15
14	Magnetotactic Bacteria, Magnetosomes, and Nanotechnology., 2014,, 39-74.		14
15	The Bacterial Magnetosome: A Unique Prokaryotic Organelle. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 63-80.	1.0	64
16	Magnetotactic bacteria from Pavilion Lake, British Columbia. Frontiers in Microbiology, 2013, 4, 406.	1.5	6
17	Dissociation Rate Constants of Human Fibronectin Binding to Fibronectin-binding Proteins on Living Staphylococcus aureus Isolated from Clinical Patients. Journal of Biological Chemistry, 2012, 287, 6693-6701.	1.6	28
18	Collection, Isolation and Enrichment of Naturally Occurring Magnetotactic Bacteria from the Environment. Journal of Visualized Experiments, 2012, , e50123.	0.2	7

#	Article	IF	Citations
19	Magnetosomes and magnetite crystals produced by magnetotactic bacteria as resolved by atomic force microscopy and transmission electron microscopy. Micron, 2012, 43, 1331-1335.	1.1	20
20	Magnetotactic Bacteria Containing Phosphorus-Rich Inclusion Bodies. Microscopy and Microanalysis, 2011, 17, 140-141.	0.2	2
21	Polymorphisms in fibronectin binding protein A of <i>Staphylococcus aureus</i> are associated with infection of cardiovascular devices. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18372-18377.	3.3	69
22	Force Spectroscopy of Mineral-Microbe Bonds. , 2011, , 301-315.		0
23	A Tactile Response in Staphylococcus aureus. Biophysical Journal, 2010, 99, 2803-2811.	0.2	19
24	Antibody Recognition Force Microscopy Shows that Outer Membrane Cytochromes OmcA and MtrC Are Expressed on the Exterior Surface of <i>Shewanella oneidensis</i> MR-1. Applied and Environmental Microbiology, 2009, 75, 2931-2935.	1.4	100
25	Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1. Geochimica Et Cosmochimica Acta, 2009, 73, 962-976.	1.6	216
26	Binding and direct electrochemistry of OmcA, an outer-membrane cytochrome from an iron reducing bacterium, with oxide electrodes: A candidate biofuel cell system. Inorganica Chimica Acta, 2008, 361, 769-777.	1.2	69
27	In Vitro Evolution of a Peptide with a Hematite Binding Motif That May Constitute a Natural Metal-Oxide Binding Archetype. Environmental Science & Technology, 2008, 42, 3821-3827.	4.6	83
28	Specific Bonds between an Iron Oxide Surface and Outer Membrane Cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. Journal of Bacteriology, 2007, 189, 4944-4952.	1.0	126
29	A Bacterium's Sense of "Touch― Materials Research Society Symposia Proceedings, 2007, 1063, 1.	0.1	0
30	Nanoscale Forces at the Heart of Staphylococcus Infections. Materials Research Society Symposia Proceedings, 2007, 1025, 1.	0.1	0
31	Electron tunneling properties of outer-membrane decaheme cytochromes from Shewanella oneidensis. Geochimica Et Cosmochimica Acta, 2007, 71, 543-555.	1.6	56
32	Correlation between Fundamental Binding Forces and Clinical Prognosis of Staphylococcus aureusInfections of Medical Implants. Langmuir, 2007, 23, 2289-2292.	1.6	33
33	High-Affinity Binding and Direct Electron Transfer to Solid Metals by theShewanella oneidensisMR-1 Outer Membranec-type Cytochrome OmcA. Journal of the American Chemical Society, 2006, 128, 13978-13979.	6.6	210
34	Isolation of a High-Affinity Functional Protein Complex between OmcA and MtrC: Two Outer Membrane Decaheme c -Type Cytochromes of Shewanella oneidensis MR-1. Journal of Bacteriology, 2006, 188, 4705-4714.	1.0	227
35	Putative mineral-specific proteins synthesized by a metal reducing bacterium. Numerische Mathematik, 2005, 305, 687-710.	0.7	23
36	Simultaneous Force and Fluorescence Measurements of a Protein That Forms a Bond between a Living Bacterium and a Solid Surface. Journal of Bacteriology, 2005, 187, 2127-2137.	1.0	72

#	Article	lF	CITATIONS
37	A Phosphoprotein from the Archaeon Sulfolobus solfataricus with Protein-Serine/Threonine Kinase Activity. Journal of Bacteriology, 2004, 186, 463-472.	1.0	25
38	Phosphoprotein with Phosphoglycerate Mutase Activity from the Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2003, 185, 2112-2121.	1.0	24
39	Open Reading Frame sso2387 from the Archaeon Sulfolobus solfataricus Encodes a Polypeptide with Protein-Serine Kinase Activity. Journal of Bacteriology, 2003, 185, 3436-3445.	1.0	26
40	The Membrane-Associated Protein-Serine/Threonine Kinase from Sulfolobus solfataricus Is a Glycoprotein. Journal of Bacteriology, 2002, 184, 2614-2619.	1.0	21
41	The Archaeon Sulfolobus solfataricusContains a Membrane-Associated Protein Kinase Activity That Preferentially Phosphorylates Threonine Residues In Vitro. Journal of Bacteriology, 2000, 182, 3452-3459.	1.0	22