
## **Chi-Shiun Chiang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3631699/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rabies Virus Glycoprotein-Mediated Transportation and T Cell Infiltration to Brain Tumor by<br>Magnetoelectric Gold Yarnballs. ACS Nano, 2022, 16, 4014-4027.                                                                                              | 14.6 | 10        |
| 2  | Conquering multidrug resistant lung cancer by upconversion <scp>nanoparticlesâ€mediated</scp><br>photodynamic therapy and gene silencing. Journal of the Chinese Chemical Society, 2022, 69, 1305-1317.                                                    | 1.4  | 1         |
| 3  | Salt-mediated, plasmonic field-field/field-lattice coupling-enhanced NIR-II photodynamic therapy using core-gap-shell gold nanopeanuts. Nanoscale Horizons, 2022, 7, 589-606.                                                                              | 8.0  | 8         |
| 4  | Role of Myeloid-Derived Suppressor Cells in High-Dose-Irradiated TRAMP-C1 Tumors: A Therapeutic<br>Target and an Index for Assessing Tumor Microenvironment. International Journal of Radiation<br>Oncology Biology Physics, 2021, 109, 1547-1558.         | 0.8  | 10        |
| 5  | Marginative Delivery-Mediated Extracellular Leakiness and T Cell Infiltration in Lung Metastasis by a<br>Biomimetic Nanoraspberry. Nano Letters, 2021, 21, 1375-1383.                                                                                      | 9.1  | 22        |
| 6  | Ablative Radiotherapy Reprograms the Tumor Microenvironment of a Pancreatic Tumor in Favoring<br>the Immune Checkpoint Blockade Therapy. International Journal of Molecular Sciences, 2021, 22, 2091.                                                      | 4.1  | 13        |
| 7  | A Noninvasive Gutâ€toâ€Brain Oral Drug Delivery System for Treating Brain Tumors. Advanced Materials,<br>2021, 33, e2100701.                                                                                                                               | 21.0 | 38        |
| 8  | Multifunctional CuO/Cu <sub>2</sub> O Truncated Nanocubes as Trimodal Image-Guided<br>Near-Infrared-III Photothermal Agents to Combat Multi-Drug-Resistant Lung Carcinoma. ACS Nano,<br>2021, 15, 14404-14418.                                             | 14.6 | 31        |
| 9  | Local Interleukin-12 Treatment Enhances the Efficacy of Radiation Therapy by Overcoming<br>Radiation-Induced Immune Suppression. International Journal of Molecular Sciences, 2021, 22, 10053.                                                             | 4.1  | 3         |
| 10 | Polymer-Coated Nanoparticles for Therapeutic and Diagnostic Non-10B Enriched Polymer-Coated<br>Boron Carbon Oxynitride (BCNO) Nanoparticles as Potent BNCT Drug. Nanomaterials, 2021, 11, 2936.                                                            | 4.1  | 11        |
| 11 | Distinct Role of CD11b+Ly6Gâ^'Ly6Câ^' Myeloid-Derived Cells on the Progression of the Primary Tumor<br>and Therapy-Associated Recurrent Brain Tumor. Cells, 2020, 9, 51.                                                                                   | 4.1  | 9         |
| 12 | Photodynamic Therapy: Unprecedented Theranostic LaB <sub>6</sub> Nanocubesâ€Mediated NIRâ€IIb<br>Photodynamic Therapy to Conquer Hypoxiaâ€Induced Chemoresistance (Adv. Funct. Mater. 36/2020).<br>Advanced Functional Materials, 2020, 30, 2070246.       | 14.9 | 1         |
| 13 | Sunitinib Treatment-elicited Distinct Tumor Microenvironment Dramatically Compensated the Reduction of Myeloid-derived Suppressor Cells. In Vivo, 2020, 34, 1141-1152.                                                                                     | 1.3  | 6         |
| 14 | Unprecedented Theranostic LaB 6 Nanocubesâ€Mediated NIRâ€IIb Photodynamic Therapy to Conquer<br>Hypoxiaâ€Induced Chemoresistance. Advanced Functional Materials, 2020, 30, 2002940.                                                                        | 14.9 | 16        |
| 15 | Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. Journal of Controlled Release, 2020, 321, 159-173.                                                           | 9.9  | 23        |
| 16 | Size and Shape Effects of Nearâ€Infrared Lightâ€Activatable Cu <sub>2</sub> (OH)PO <sub>4</sub><br>Nanostructures on Phototherapeutic Destruction of Drugâ€Resistant Hypoxia Tumors. Particle and<br>Particle Systems Characterization, 2020, 37, 2000001. | 2.3  | 5         |
| 17 | Distinct Tumor Microenvironment at Tumor Edge as a Result of Astrocyte Activation Is Associated<br>With Therapeutic Resistance for Brain Tumor. Frontiers in Oncology, 2019, 9, 307.                                                                       | 2.8  | 19        |
| 18 | Human Peripheral Blood Eosinophils Express High Levels of the Purinergic Receptor P2X4. Frontiers in<br>Immunology, 2019, 10, 2074.                                                                                                                        | 4.8  | 12        |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Sigma-2 receptor/TMEM97 agonist PB221 as an alternative drug for brain tumor. BMC Cancer, 2019, 19, 473.                                                                                                                                        | 2.6  | 23        |
| 20 | Magnetic ternary nanohybrids for nonviral gene delivery of stem cells and applications on cancer therapy. Theranostics, 2019, 9, 2411-2423.                                                                                                     | 10.0 | 38        |
| 21 | Graphene Quantum Dots-Mediated Theranostic Penetrative Delivery of Drug and Photolytics in Deep<br>Tumors by Targeted Biomimetic Nanosponges. Nano Letters, 2019, 19, 69-81.                                                                    | 9.1  | 110       |
| 22 | Bioprosthesis of Core–Shell Gold Nanorod/Serum Albumin Nanoimitation: A Half-Native and<br>Half-Artificial Nanohybrid for Cancer Theranostics. Chemistry of Materials, 2018, 30, 729-747.                                                       | 6.7  | 18        |
| 23 | Lauryl Gallate Induces Apoptotic Cell Death through Caspase-dependent Pathway in U87 Human<br>Glioblastoma Cells <i>In Vitro</i> . In Vivo, 2018, 32, 1119-1127.                                                                                | 1.3  | 5         |
| 24 | Graphene oxide sensitizes cancer cells to chemotherapeutics by inducing early autophagy events, promoting nuclear trafficking and necrosis. Theranostics, 2018, 8, 2477-2487.                                                                   | 10.0 | 45        |
| 25 | Radiotherapy-Controllable Chemotherapy from Reactive Oxygen Species-Responsive Polymeric<br>Nanoparticles for Effective Local Dual Modality Treatment of Malignant Tumors. Biomacromolecules,<br>2018, 19, 3825-3839.                           | 5.4  | 22        |
| 26 | Unexpected dose response of HaCaT to UVB irradiation. In Vitro Cellular and Developmental Biology -<br>Animal, 2018, 54, 589-599.                                                                                                               | 1.5  | 2         |
| 27 | Hierarchically Targeted and Penetrated Delivery of Drugs to Tumors by Sizeâ€Changeable Graphene<br>Quantum Dot Nanoaircrafts for Photolytic Therapy. Advanced Functional Materials, 2017, 27, 1700056.                                          | 14.9 | 89        |
| 28 | Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. Journal of Controlled Release, 2017, 255, 164-175.                                                                                          | 9.9  | 64        |
| 29 | Engineering Novel Targeted Boronâ€10â€Enriched Theranostic Nanomedicine to Combat against Murine<br>Brain Tumors via MR Imagingâ€Guided Boron Neutron Capture Therapy. Advanced Materials, 2017, 29,<br>1700850.                                | 21.0 | 89        |
| 30 | Tumortropic adipose-derived stem cells carrying smart nanotherapeutics for targeted delivery and<br>dual-modality therapy of orthotopic glioblastoma. Journal of Controlled Release, 2017, 254, 119-130.                                        | 9.9  | 67        |
| 31 | Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with<br>radiotherapy increases tumour response by vascular disruption and improved oxygenation.<br>International Journal of Hyperthermia, 2017, 33, 1-9. | 2.5  | 14        |
| 32 | Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion.<br>British Journal of Cancer, 2017, 117, 1828-1836.                                                                                          | 6.4  | 35        |
| 33 | Albumin-Gold Nanorod Nanoplatform for Cell-Mediated Tumoritropic Delivery with Homogenous<br>ChemoDrug Distribution and Enhanced Retention Ability. Theranostics, 2017, 7, 3034-3052.                                                           | 10.0 | 22        |
| 34 | The Paradoxical Effects of Different Hepatitis C Viral Loads on Host DNA Damage and Repair Abilities.<br>PLoS ONE, 2017, 12, e0164281.                                                                                                          | 2.5  | 7         |
| 35 | Challenges of Using High-Dose Fractionation Radiotherapy in Combination Therapy. Frontiers in Oncology, 2016, 6, 165.                                                                                                                           | 2.8  | 9         |
| 36 | Dualâ€Targeted Photopenetrative Delivery of Multiple Micelles/Hydrophobic Drugs by a Nanopea for<br>Enhanced Tumor Therapy. Advanced Functional Materials, 2016, 26, 4169-4179.                                                                 | 14.9 | 17        |

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nano-graphene oxide-mediated InÂvivo fluorescence imaging and bimodal photodynamic and photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95, 1-10.                                                                                               | 11.4 | 182       |
| 38 | Unprecedented "Allâ€inâ€One―Lanthanideâ€Doped Mesoporous Silica Frameworks for Fluorescence/MR<br>Imaging and Combination of NIR Light Triggered Chemoâ€Photodynamic Therapy of Tumors. Advanced<br>Functional Materials, 2016, 26, 7908-7920.                          | 14.9 | 56        |
| 39 | The Penetrated Delivery of Drug and Energy to Tumors by Lipo-Graphene Nanosponges for Photolytic<br>Therapy. ACS Nano, 2016, 10, 9420-9433.                                                                                                                             | 14.6 | 53        |
| 40 | Multiâ€Branched Plasmonic Gold Nanoechinusâ€Based Triple Modal Bioimaging: An Efficient NIRâ€ŧoâ€NIR Up<br>and Downâ€Conversion Emission and Photoacoustic Imaging. Advanced Materials Technologies, 2016, 1,<br>1600107.                                               | 5.8  | 12        |
| 41 | Decline of Tumor Vascular Function as AssessedÂby Dynamic Contrast-Enhanced Magnetic Resonance<br>Imaging Is Associated WithÂPoor Responses to Radiation Therapy andÂChemotherapy. International<br>Journal of Radiation Oncology Biology Physics, 2016, 95, 1495-1503. | 0.8  | 7         |
| 42 | Nucleusâ€Targeting Gold Nanoclusters for Simultaneous In Vivo Fluorescence Imaging, Gene Delivery,<br>and NIR‣ight Activated Photodynamic Therapy. Advanced Functional Materials, 2015, 25, 5934-5945.                                                                  | 14.9 | 174       |
| 43 | Complete destruction of deep-tissue buried tumors via combination of gene silencing and gold nanoechinus-mediated photodynamic therapy. Biomaterials, 2015, 62, 13-23.                                                                                                  | 11.4 | 45        |
| 44 | Preparation, cytotoxicity and <i>in vivo</i> bioimaging of highly luminescent water-soluble silicon quantum dots. Nanotechnology, 2015, 26, 215703.                                                                                                                     | 2.6  | 25        |
| 45 | Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials, 2015, 71, 71-83.                                                                                                          | 11.4 | 92        |
| 46 | Cancer Therapy: Nucleus-Targeting Gold Nanoclusters for Simultaneous In Vivo Fluorescence Imaging,<br>Gene Delivery, and NIR-Light Activated Photodynamic Therapy (Adv. Funct. Mater. 37/2015). Advanced<br>Functional Materials, 2015, 25, 5933-5933.                  | 14.9 | 3         |
| 47 | Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia.<br>Journal of Controlled Release, 2015, 220, 738-750.                                                                                                                    | 9.9  | 57        |
| 48 | Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials, 2015, 40, 12-22.                                                                                                | 11.4 | 85        |
| 49 | Irradiation Enhances the Ability of Monocytes as Nanoparticle Carrier for Cancer Therapy. PLoS ONE, 2015, 10, e0139043.                                                                                                                                                 | 2.5  | 10        |
| 50 | Extremely Low-Frequency Electromagnetic Fields Cause G1 Phase Arrest through the Activation of the ATM-Chk2-p21 Pathway. PLoS ONE, 2014, 9, e104732.                                                                                                                    | 2.5  | 31        |
| 51 | Phototherapy: Designing Multi-Branched Gold Nanoechinus for NIR Light Activated Dual Modal<br>Photodynamic and Photothermal Therapy in the Second Biological Window (Adv. Mater. 39/2014).<br>Advanced Materials, 2014, 26, 6688-6688.                                  | 21.0 | 0         |
| 52 | Designing Multiâ€Branched Gold Nanoechinus for NIR Light Activated Dual Modal Photodynamic and<br>Photothermal Therapy in the Second Biological Window. Advanced Materials, 2014, 26, 6689-6695.                                                                        | 21.0 | 341       |
| 53 | Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials, 2014, 35, 5527-5538.                                                                                                       | 11.4 | 214       |
| 54 | Effects of surface functionality of carbon nanomaterials on short-term cytotoxicity and embryonic development in zebrafish. Journal of Materials Chemistry B, 2014, 2, 1038-1047.                                                                                       | 5.8  | 12        |

| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A general strategy to achieve ultra-high gene transfection efficiency using lipid-nanoparticle composites. Biomaterials, 2014, 35, 8261-8272.                                                                                                                               | 11.4 | 15        |
| 56 | First Demonstration of Gold Nanorodsâ€Mediated Photodynamic Therapeutic Destruction of Tumors via<br>Near Infraâ€Red Light Activation. Small, 2014, 10, 1612-1622.                                                                                                          | 10.0 | 200       |
| 57 | Effects of pre-irradiation and SDF-1 suppression on the progression of murine astrocytoma cells grown in different stromal beds. International Journal of Radiation Biology, 2014, 90, 1162-1168.                                                                           | 1.8  | 1         |
| 58 | 99mTc Pyrene Derivative Complex Causes Double-Strand Breaks in dsDNA Mainly through Cluster-Mediated Indirect Effect in Aqueous Solution. PLoS ONE, 2014, 9, e108162.                                                                                                       | 2.5  | 5         |
| 59 | Abstract 3945: Inhibition of MMP2 expression enhances the efficacy of radiation therapy for a murine astrocytoma. , 2014, , .                                                                                                                                               |      | 0         |
| 60 | Morphology dependent photosensitization and formation of singlet oxygen (1î"g) by gold and silver<br>nanoparticles and its application in cancer treatment. Journal of Materials Chemistry B, 2013, 1, 4379.                                                                | 5.8  | 88        |
| 61 | A Preclinical Study to Explore Vasculature Differences Between Primary and Recurrent Tumors Using<br>Ultrasound Doppler Imaging. Ultrasound in Medicine and Biology, 2013, 39, 860-869.                                                                                     | 1.5  | 11        |
| 62 | Combination of Vessel-Targeting Agents and Fractionated Radiation Therapy: The Role of the SDF-1/CXCR4 Pathway. International Journal of Radiation Oncology Biology Physics, 2013, 86, 777-784.                                                                             | 0.8  | 34        |
| 63 | Photosensitization of Singlet Oxygen and Inâ€Vivo Photodynamic Therapeutic Effects Mediated by<br>PEGylated W <sub>18</sub> O <sub>49</sub> Nanowires. Angewandte Chemie - International Edition,<br>2013, 52, 12332-12336.                                                 | 13.8 | 148       |
| 64 | Radiation Therapy-Induced Tumor Invasiveness Is Associated with SDF-1-Regulated Macrophage<br>Mobilization and Vasculogenesis. PLoS ONE, 2013, 8, e69182.                                                                                                                   | 2.5  | 89        |
| 65 | The Roles of Macrophages and Nitric Oxide in Interleukin-3-Enhanced HSV-Sr39tk-Mediated Prodrug<br>Therapy. PLoS ONE, 2013, 8, e56508.                                                                                                                                      | 2.5  | 7         |
| 66 | Comparative Transcriptome Profiling of an SV40-Transformed Human Fibroblast (MRC5CVI) and Its<br>Untransformed Counterpart (MRC-5) in Response to UVB Irradiation. PLoS ONE, 2013, 8, e73311.                                                                               | 2.5  | 5         |
| 67 | Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Laboratory Investigation, 2012, 92, 151-162.                                                                                                                | 3.7  | 145       |
| 68 | Characterization of tumor vasculature distributions in central and peripheral regions based on Doppler ultrasound. Medical Physics, 2012, 39, 7490-7498.                                                                                                                    | 3.0  | 8         |
| 69 | Study of [18F]FLT and [123I]IaraU for cellular imaging in HSV1 tk-transfected murine fibrosarcoma cells: evaluation of the tracer uptake using 5-fluoro, 5-iodo and 5-iodovinyl arabinosyl uridines as competitive probes. Nuclear Medicine and Biology, 2012, 39, 371-376. | 0.6  | 3         |
| 70 | Irradiation Promotes an M2 Macrophage Phenotype in Tumor Hypoxia. Frontiers in Oncology, 2012, 2,<br>89.                                                                                                                                                                    | 2.8  | 154       |
| 71 | Development of the hybrid Sleeping Beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Therapy, 2012, 19, 844-851.                                                                                                                             | 4.5  | 47        |
| 72 | The in vivo biodistribution and fate of CdSe quantum dots in the murine model: a laser ablation<br>inductively coupled plasma mass spectrometry study. Analytical and Bioanalytical Chemistry, 2012, 404,<br>3025-3036.                                                     | 3.7  | 28        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Gene Expression Profiling of Dendritic Cells in Different Physiological Stages under Cordyceps<br>sinensis Treatment. PLoS ONE, 2012, 7, e40824.                                                                                                         | 2.5  | 8         |
| 74 | In vivo imaging of radiation-induced tissue apoptosis by 99mTc(I)-his6-annexin A5. Annals of Nuclear<br>Medicine, 2012, 26, 272-280.                                                                                                                     | 2.2  | 2         |
| 75 | Inactivation of ataxia telangiectasia mutated gene can increase intracellular reactive oxygen species<br>levels and alter radiation-induced cell death pathways in human glioma cells. International Journal of<br>Radiation Biology, 2011, 87, 432-442. | 1.8  | 12        |
| 76 | Nano-scaled pH-responsive polymeric vesicles for intracellular release of doxorubicin. Journal of<br>Drug Targeting, 2011, 19, 944-953.                                                                                                                  | 4.4  | 28        |
| 77 | Honokiol inhibits LPSâ€induced maturation and inflammatory response of human monocyteâ€derived<br>dendritic cells. Journal of Cellular Physiology, 2011, 226, 2338-2349.                                                                                 | 4.1  | 44        |
| 78 | Vasculatures in Tumors Growing From Preirradiated Tissues: Formed by Vasculogenesis and Resistant<br>to Radiation and Antiangiogenic Therapy. International Journal of Radiation Oncology Biology<br>Physics, 2011, 80, 1512-1521.                       | 0.8  | 23        |
| 79 | Assessment of tumor vasculature for diagnostic and therapeutic applications in a mouse model in vivo using 25-MHz power Doppler imaging. Ultrasonics, 2011, 51, 925-931.                                                                                 | 3.9  | 18        |
| 80 | Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Therapy, 2011, 18, 637-645.                                                                                                                                              | 4.6  | 34        |
| 81 | Characterize the vasculatures distribution of murine tumors between center and peripheral regions based on doppler ultrasound and immunofluorescent analysis. , 2011, , .                                                                                |      | 0         |
| 82 | Repeated Small Perturbation Approach Reveals Transcriptomic Steady States. PLoS ONE, 2011, 6, e29241.                                                                                                                                                    | 2.5  | 7         |
| 83 | Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.<br>Biomaterials, 2010, 31, 8419-8425.                                                                                                                            | 11.4 | 34        |
| 84 | Characterization of tumor vasculature derived from angiogenesis and vasculogenesis by high-frequency three-dimensional Doppler ultrasound. , 2010, , .                                                                                                   |      | 1         |
| 85 | Radiotherapy Decreases Vascular Density and Causes Hypoxia with Macrophage Aggregation in TRAMP-C1 Prostate Tumors. Clinical Cancer Research, 2009, 15, 1721-1729.                                                                                       | 7.0  | 117       |
| 86 | Determining the Zeroâ€Force Binding Energetics of an Intercalated DNA Complex by a Singleâ€Molecule<br>Approach. ChemPhysChem, 2009, 10, 2791-2794.                                                                                                      | 2.1  | 12        |
| 87 | Two-sided effect of <i>Cordyceps sinensis</i> on dendritic cells in different physiological stages.<br>Journal of Leukocyte Biology, 2009, 85, 987-995.                                                                                                  | 3.3  | 27        |
| 88 | UVB Radiation Induces Persistent Activation of Ribosome and Oxidative Phosphorylation Pathways.<br>Radiation Research, 2009, 171, 716.                                                                                                                   | 1.5  | 17        |
| 89 | <i>Cordyceps sinensis</i> Health Supplement Enhances Recovery from Taxol-Induced Leukopenia.<br>Experimental Biology and Medicine, 2008, 233, 447-455.                                                                                                   | 2.4  | 18        |
| 90 | Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. Journal of the American<br>Chemical Society, 2008, 130, 15476-15481.                                                                                                              | 13.7 | 132       |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Functional phenotype of macrophages depends on assay procedures. International Immunology, 2008, 20, 215-222.                                                                                                                                    | 4.0 | 36        |
| 92  | Comparison of Bioactivities of 5-Fluoro, 5-lodo, 5-lodovinyl, and 5-Fluorovinyl Arabinosyl Uridines<br>against SR-39 TK-Transfected Murine Prostate Cancer Cells. Chemical and Pharmaceutical Bulletin,<br>2008, 56, 109-111.                    | 1.3 | 5         |
| 93  | Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and<br>Promote Tumor Growth. International Journal of Radiation Oncology Biology Physics, 2007, 68,<br>499-507.                                          | 0.8 | 206       |
| 94  | Protection against Radiation-Induced Bone Marrow and Intestinal Injuries by Cordyceps sinensis, a<br>Chinese Herbal Medicine. Radiation Research, 2006, 166, 900-907.                                                                            | 1.5 | 42        |
| 95  | Tetracycline-regulated intratumoral expression of interleukin-3 enhances the efficacy of radiation therapy for murine prostate cancer. Cancer Gene Therapy, 2006, 13, 1082-1092.                                                                 | 4.6 | 16        |
| 96  | Compartmental responses after thoracic irradiation of mice: Strain differences. International Journal of Radiation Oncology Biology Physics, 2005, 62, 862-871.                                                                                  | 0.8 | 96        |
| 97  | Co-expression of interleukin-2 to increase the efficacy of DNA vaccine-mediated protection in coxsackievirus B3-infected mice. Antiviral Research, 2004, 64, 131-136.                                                                            | 4.1 | 11        |
| 98  | A Sense of Danger from Radiation1. Radiation Research, 2004, 162, 1-19.                                                                                                                                                                          | 1.5 | 306       |
| 99  | Bronchoalveolar lavage and interstitial cells have different roles in radiation-induced lung injury.<br>International Journal of Radiation Biology, 2003, 79, 159-167.                                                                           | 1.8 | 62        |
| 100 | Can short-term administration of dexamethasone abrogate radiation-induced acute cytokine gene<br>response in lung and modify subsequent molecular responses?. International Journal of Radiation<br>Oncology Biology Physics, 2001, 51, 296-303. | 0.8 | 33        |
| 101 | Combining radiation therapy with interleukin-3 gene immunotherapy. Cancer Gene Therapy, 2000, 7, 1172-1178.                                                                                                                                      | 4.6 | 37        |
| 102 | Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. International Journal of Radiation Biology, 1999, 75, 1421-1427.                                                                       | 1.8 | 151       |
| 103 | Response of Glia, Mast Cells and the Blood Brain Barrier, in Transgenic Mice Expressing Interleukinâ€3 in<br>Astrocytes, an Experimental Model for CNS Demyelination. Brain Pathology, 1999, 9, 219-235.                                         | 4.1 | 34        |
| 104 | Delayed molecular responses to brain irradiation. International Journal of Radiation Biology, 1997, 72,<br>45-53.                                                                                                                                | 1.8 | 153       |
| 105 | Induction of c-fos and junB mRNA following in vivo brain irradiation. Molecular Brain Research, 1997, 48, 223-228.                                                                                                                               | 2.3 | 28        |
| 106 | Behavioral and Neurophysiological Effects of CNS Expression of Cytokines in Transgenic Mice.<br>Advances in Experimental Medicine and Biology, 1996, 402, 199-205.                                                                               | 1.6 | 8         |
| 107 | Macrophage/microglial-mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice Journal of Clinical Investigation, 1996, 97, 1512-1524.                              | 8.2 | 101       |
| 108 | Induction of acute phase gene expression by brain irradiation. International Journal of Radiation<br>Oncology Biology Physics, 1995, 33, 619-626.                                                                                                | 0.8 | 314       |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Reply to Leith. International Journal of Radiation Oncology Biology Physics, 1995, 31, 690.                                                                                    | 0.8 | 0         |
| 110 | Cytokine Involvement in Central Nervous System Disease Annals of the New York Academy of Sciences, 1995, 771, 301-312.                                                         | 3.8 | 19        |
| 111 | Modification of Tumor Microenvironment by Cytokine Gene Transfer. Acta Oncológica, 1995, 34, 447-451.                                                                          | 1.8 | 15        |
| 112 | G 2 /M-Phase Arrest and Release in Ataxia Telangiectasia and Normal Cells after Exposure to Ionizing<br>Radiation. Radiation Research, 1994, 140, 17.                          | 1.5 | 24        |
| 113 | Reactive Gliosis as a Consequence of Interleukin-6 Expression in the Brain: Studies in Transgenic Mice.<br>Developmental Neuroscience, 1994, 16, 212-221.                      | 2.0 | 223       |
| 114 | Late effects of radiation on the lumbar spinal cord of guinea pigs: Re-treatment tolerance.<br>International Journal of Radiation Oncology Biology Physics, 1993, 26, 643-648. | 0.8 | 47        |
| 115 | Radiation-induced astrocytic and microglial responses in mouse brain. Radiotherapy and Oncology, 1993, 29, 60-68.                                                              | 0.6 | 169       |
| 116 | Myelin-associated changes in mouse brain following irradiation. Radiotherapy and Oncology, 1993, 27, 229-236.                                                                  | 0.6 | 38        |
| 117 | Alteration in myelin-associated proteins following spinal cord irradiation in guinea pigs.<br>International Journal of Radiation Oncology Biology Physics, 1992, 24, 929-937.  | 0.8 | 25        |
| 118 | Radiation enhances tumor necrosis factor α production by murine brain cells. Brain Research, 1991, 566, 265-269.                                                               | 2.2 | 97        |