Carolina Bermudo Gamboa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3631314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the Chip Geometry in Dry Machining of Aeronautical Aluminum Alloys. Applied Sciences (Switzerland), 2017, 7, 132.	2.5	24
2	Experimental Parametric Relationships for Chip Geometry in Dry Machining of the Ti6Al4V Alloy. Materials, 2018, 11, 1260.	2.9	21
3	2D–3D Digital Image Correlation Comparative Analysis for Indentation Process. Materials, 2019, 12, 4156.	2.9	13
4	Fatigue Behavior Parametric Analysis of Dry Machined UNS A97075 Aluminum Alloy. Metals, 2020, 10, 631.	2.3	12
5	Cutting Speed and Feed Influence on Surface Microhardness of Dry-Turned UNS A97075-T6 Alloy. Applied Sciences (Switzerland), 2020, 10, 1049.	2.5	12
6	Modeling of the fracture energy on the finite element simulation in Ti6Al4V alloy machining. Scientific Reports, 2021, 11, 18490.	3.3	9
7	Parametric Analysis of Macro-Geometrical Deviations in Dry Turning of UNS A97075 (Al-Zn) Alloy. Metals, 2019, 9, 1141.	2.3	8
8	Analytical Approach to the Indentation Process. Application of the Upper Bound Element Technique. Materials Science Forum, 2012, 713, 13-18.	0.3	7
9	Study of the Tool Geometry Influence in Indentation for the Analysis and Validation of the New Modular Upper Bound Technique. Applied Sciences (Switzerland), 2016, 6, 203.	2.5	7
10	Parametric analysis of the Ultimate Tensile Strength in dry machining of UNS A97075 Alloy. Procedia Manufacturing, 2017, 13, 81-88.	1.9	7
11	Material Flow Analysis in Indentation by Two-Dimensional Digital Image Correlation and Finite Elements Method. Materials, 2017, 10, 674.	2.9	7
12	Application of the upper bound element technique with triangular rigid blocks in indentation. , 2012, ,		5
13	Analysis and Selection of the Modular Block Distribution in Indentation Process by the Upper Bound Theorem. Procedia Engineering, 2013, 63, 388-396.	1.2	4
14	Experimental Validation of the New Modular Application of the Upper Bound Theorem in Indentation. PLoS ONE, 2015, 10, e0122790.	2.5	4
15	Selection of the Optimal Distribution for the Upper Bound Theorem in Indentation Processes. Materials Science Forum, 2014, 797, 117-122.	0.3	3
16	Online Tool Wear Monitoring by the Analysis of Cutting Forces in Transient State for Dry Machining of Ti6Al4V Alloy. Metals, 2019, 9, 1014.	2.3	3
17	Analysis of the Integrated Implementation of the Manufacturing Engineering Subject in Engineering Degrees at the Malaga University. Materials Science Forum, 0, 759, 1-9.	0.3	2
18	Hardening Study on the Application of the Upper Bound Theorem in Indentation Processes by Means of Modules of Triangular Rigid Zones. Procedia Engineering, 2015, 132, 282-289.	1.2	2

#	Article	IF	CITATIONS
19	Hardening Effect Analysis by Modular Upper Bound and Finite Element Methods in Indentation of Aluminum, Steel, Titanium and Superalloys. Materials, 2017, 10, 556.	2.9	2
20	Application of the Upper Bound Theorem to Indentation Processes with Tilted Punch by Means of Modular Model. Procedia Engineering, 2015, 132, 274-281.	1.2	1
21	Influence of Tool Wear on Form Deviations in Dry Machining of UNS A97075 Alloy. Metals, 2021, 11, 958.	2.3	1
22	Thesaurus and Graphipedia Tools Development at the Manufacturing Engineering Subjects of the University of Malaga. Materials Science Forum, 0, 853, 85-90.	0.3	0
23	Temperature implementation for the Modular Upper Bound application in indentation processes. Procedia Manufacturing, 2017, 13, 243-250.	1.9	0
24	Teaching Machines Tools Operation in Virtual Laboratories of Engineering Faculties. Mechanisms and Machine Science, 2014, , 163-169.	0.5	0