
Reiko Nishihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3631004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Colorectal-Cancer Incidence and Mortality after Lower Endoscopy. New England Journal of Medicine, 2013, 369, 1095-1105.	13.9	1,232
2	Aspirin Use, Tumor <i>PIK3CA</i> Mutation, and Colorectal-Cancer Survival. New England Journal of Medicine, 2012, 367, 1596-1606.	13.9	752
3	<i>Fusobacterium nucleatum</i> in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65, 1973-1980.	6.1	718
4	Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports, 2016, 15, 857-865.	2.9	671
5	Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut, 2012, 61, 847-854.	6.1	518
6	<i>Fusobacterium nucleatum</i> and T Cells in Colorectal Carcinoma. JAMA Oncology, 2015, 1, 653.	3.4	498
7	RNF43 is frequently mutated in colorectal and endometrial cancers. Nature Genetics, 2014, 46, 1264-1266.	9.4	388
8	Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. Journal of the National Cancer Institute, 2013, 105, 1151-1156.	3.0	380
9	Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discovery, 2018, 8, 730-749.	7.7	367
10	Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncology, 2016, 2, 762.	3.4	261
11	Association of Dietary Patterns With Risk of Colorectal Cancer Subtypes Classified by <i>Fusobacterium nucleatum</i> in Tumor Tissue. JAMA Oncology, 2017, 3, 921.	3.4	243
12	Prognostic Role of <i>PIK3CA</i> Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clinical Cancer Research, 2012, 18, 2257-2268.	3.2	233
13	Specific Mutations in <i>KRAS</i> Codons 12 and 13, and Patient Prognosis in 1075 <i>BRAF</i> Wild-Type Colorectal Cancers. Clinical Cancer Research, 2012, 18, 4753-4763.	3.2	220
14	Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Modern Pathology, 2013, 26, 465-484.	2.9	193
15	Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut, 2017, 66, 1463-1473.	6.1	173
16	Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Modern Pathology, 2015, 28, 14-29.	2.9	172
17	Insights into Pathogenic Interactions Among Environment, Host, and Tumor at the Crossroads of Molecular Pathology and Epidemiology. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 83-103.	9.6	169
18	Review Article. Epidemiology, 2016, 27, 602-611.	1.2	154

REIKO NISHIHARA

#	Article	IF	CITATIONS
19	Aspirin Use and Risk of Colorectal Cancer According to BRAF Mutation Status. JAMA - Journal of the American Medical Association, 2013, 309, 2563.	3.8	146
20	Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut, 2018, 67, 1168-1180.	6.1	139
21	A Model to Determine Colorectal Cancer Risk Using Common Genetic Susceptibility Loci. Gastroenterology, 2015, 148, 1330-1339.e14.	0.6	129
22	<i>Fusobacterium nucleatum</i> in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunology Research, 2018, 6, 1327-1336.	1.6	127
23	Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes. Gastroenterology, 2017, 152, 1944-1953.e1.	0.6	124
24	Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Molecular Cancer, 2014, 13, 135.	7.9	121
25	Aspirin Use and Colorectal Cancer Survival According to Tumor CD274 (Programmed Cell Death 1) Tj ETQq1 1 0.	784314 rg 0.8	gBT /Overlock
26	Diets That Promote Colon Inflammation Associate With Risk of Colorectal Carcinomas That Contain Fusobacterium nucleatum. Clinical Gastroenterology and Hepatology, 2018, 16, 1622-1631.e3.	2.4	103
27	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	2.7	92
28	Aspirin and the Risk of Colorectal Cancer in Relation to the Expression of 15-Hydroxyprostaglandin Dehydrogenase (<i>HPGD</i>). Science Translational Medicine, 2014, 6, 233re2.	5.8	91
29	Insulin-like growth factor 2 messenger RNA binding protein 3 (IGF2BP3) is a marker of unfavourable prognosis in colorectal cancer. European Journal of Cancer, 2012, 48, 3405-3413.	1.3	88
30	Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. Journal of Gastroenterology, 2017, 52, 265-275.	2.3	88
31	Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Review of Molecular Diagnostics, 2016, 16, 11-23.	1.5	86
32	Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut, 2016, 65, 296-304.	6.1	83
33	A Prospective Study of Duration of Smoking Cessation and Colorectal Cancer Risk by Epigenetics-related Tumor Classification. American Journal of Epidemiology, 2013, 178, 84-100.	1.6	81
34	Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. , 2020, 8, e000678.		78
35	Marine ω-3 Polyunsaturated Fatty Acid Intake and Risk of Colorectal Cancer Characterized by Tumor-Infiltrating T Cells. JAMA Oncology, 2016, 2, 1197.	3.4	68
36	Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. British Journal of Cancer, 2016, 114, 199-206.	2.9	68

Reiko Nishihara

#	Article	IF	CITATIONS
37	Regular Aspirin Use Associates With Lower Risk of ColorectalÂCancers With Low Numbers of Tumor-Infiltrating Lymphocytes. Gastroenterology, 2016, 151, 879-892.e4.	0.6	62
38	Association Between Inflammatory Diet Pattern and Risk of Colorectal Carcinoma Subtypes Classified by Immune Responses to Tumor. Gastroenterology, 2017, 153, 1517-1530.e14.	0.6	62
39	Prospective Analysis of Body Mass Index, Physical Activity, and Colorectal Cancer Risk Associated with β-Catenin (CTNNB1) Status. Cancer Research, 2013, 73, 1600-1610.	0.4	61
40	Tumor LINE-1 Methylation Level and Microsatellite Instability in Relation to Colorectal Cancer Prognosis. Journal of the National Cancer Institute, 2014, 106, .	3.0	58
41	Progress and Opportunities in Molecular Pathological Epidemiology of Colorectal Premalignant Lesions. American Journal of Gastroenterology, 2014, 109, 1205-1214.	0.2	55
42	Utility of inverse probability weighting in molecular pathological epidemiology. European Journal of Epidemiology, 2018, 33, 381-392.	2.5	54
43	MicroRNA <i>MIR21</i> (miR-21) and PTGS2 Expression in Colorectal Cancer and Patient Survival. Clinical Cancer Research, 2016, 22, 3841-3848.	3.2	53
44	TIME (Tumor Immunity in the MicroEnvironment) classification based on tumor <i>CD274</i> (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncolmmunology, 2018, 7, e1442999.	2.1	53
45	Tumor TP53 expression status, body mass index and prognosis in colorectal cancer. International Journal of Cancer, 2012, 131, 1169-1178.	2.3	51
46	The Amount of Bifidobacterium Genus in Colorectal Carcinoma Tissue in Relation to Tumor Characteristics and Clinical Outcome. American Journal of Pathology, 2018, 188, 2839-2852.	1.9	51
47	Association Between Plasma Levels of Macrophage Inhibitory Cytokine-1 Before Diagnosis of Colorectal Cancer and Mortality. Gastroenterology, 2015, 149, 614-622.	0.6	44
48	Body mass index and risk of colorectal cancer according to tumor lymphocytic infiltrate. International Journal of Cancer, 2016, 139, 854-868.	2.3	42
49	Tumor PDCD1LG2 (PD-L2) Expression and the Lymphocytic Reaction to Colorectal Cancer. Cancer Immunology Research, 2017, 5, 1046-1055.	1.6	42
50	Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts. International Journal of Cancer, 2019, 145, 3040-3051.	2.3	41
51	Genome-Wide Interaction Analyses between Genetic Variants and Alcohol Consumption and Smoking for Risk of Colorectal Cancer. PLoS Genetics, 2016, 12, e1006296.	1.5	38
52	Marine ω-3 Polyunsaturated Fatty Acids and Risk for Colorectal Cancer According to Microsatellite Instability. Journal of the National Cancer Institute, 2015, 107, .	3.0	37
53	Prediagnosis Plasma Adiponectin in Relation to Colorectal Cancer Risk According to <i>KRAS</i> Mutation Status. Journal of the National Cancer Institute, 2016, 108, djv363.	3.0	37
54	Physical Activity, Tumor PTGS2 Expression, and Survival in Patients with Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 1142-1152.	1.1	34

REIKO NISHIHARA

#	Article	IF	CITATIONS
55	Molecular pathological epidemiology gives clues to paradoxical findings. European Journal of Epidemiology, 2015, 30, 1129-1135.	2.5	34
56	Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival. Oncotarget, 2016, 7, 55098-55109.	0.8	31
57	Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer?. Journal of Diabetes and Its Complications, 2017, 31, 1228-1236.	1.2	30
58	Smoking and Risk of Colorectal Cancer Sub-Classified by Tumor-Infiltrating T Cells. Journal of the National Cancer Institute, 2019, 111, 42-51.	3.0	30
59	Survival Benefit of Exercise Differs by Tumor IRS1 Expression Status in Colorectal Cancer. Annals of Surgical Oncology, 2016, 23, 908-917.	0.7	29
60	MicroRNA <i>MIR21</i> and T Cells in Colorectal Cancer. Cancer Immunology Research, 2016, 4, 33-40.	1.6	29
61	Identification of a common variant with potential pleiotropic effect on risk of inflammatory bowel disease and colorectal cancer. Carcinogenesis, 2015, 36, 999-1007.	1.3	28
62	Alcohol, one-carbon nutrient intake, and risk of colorectal cancer according to tumor methylation level of IGF2 differentially methylated region. American Journal of Clinical Nutrition, 2014, 100, 1479-1488.	2.2	27
63	Predicted 25(OH)D Score and Colorectal Cancer Risk According to Vitamin D Receptor Expression. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1628-1637.	1.1	23
64	Aspirin exerts high anti-cancer activity in <i>PIK3CA</i> -mutant colon cancer cells. Oncotarget, 2017, 8, 87379-87389.	0.8	23
65	Vitamin D status after colorectal cancer diagnosis and patient survival according to immune response to tumour. European Journal of Cancer, 2018, 103, 98-107.	1.3	21
66	Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis. Genome Biology, 2018, 19, 142.	3.8	20
67	Tumor SQSTM1 (p62) expression and T cells in colorectal cancer. OncoImmunology, 2017, 6, e1284720.	2.1	18
68	Body mass index and risk of colorectal carcinoma subtypes classified by tumor differentiation status. European Journal of Epidemiology, 2017, 32, 393-407.	2.5	18
69	Biomarker correlation network in colorectal carcinoma by tumor anatomic location. BMC Bioinformatics, 2017, 18, 304.	1.2	18
70	A Prospective Study of Smoking and Risk of Synchronous Colorectal Cancers. American Journal of Gastroenterology, 2017, 112, 493-501.	0.2	17
71	Dietary glycemic and insulin scores and colorectal cancer survival by tumor molecular biomarkers. International Journal of Cancer, 2017, 140, 2648-2656.	2.3	17
72	Prognostic association of PTGS2 (COX-2) over-expression according to BRAF mutation status in colorectal cancer: Results from two prospective cohorts and CALGB 89803 (Alliance) trial. European Journal of Cancer, 2019, 111, 82-93.	1.3	17

Reiko Nishihara

#	Article	IF	CITATIONS
73	Lifecourse Epidemiology and Molecular Pathological Epidemiology. American Journal of Preventive Medicine, 2015, 48, 116-119.	1.6	16
74	The competing risks Cox model with auxiliary case covariates under weaker missing-at-random cause of failure. Lifetime Data Analysis, 2018, 24, 425-442.	0.4	13
75	Integration of pharmacology, molecular pathology, and population data science to support precision gastrointestinal oncology. Npj Precision Oncology, 2017, 1, .	2.3	11
76	Prognostic Utility of Molecular Factors by Age at Diagnosis of Colorectal Cancer. Clinical Cancer Research, 2016, 22, 1489-1498.	3.2	9
77	Association between Smoking and Molecular Subtypes of Colorectal Cancer. JNCI Cancer Spectrum, 2021, 5, pkab056.	1.4	8
78	Association Between Intake of Red and Processed MeatÂandÂSurvival in Patients With Colorectal Cancer inÂaÂPooled Analysis. Clinical Gastroenterology and Hepatology, 2019, 17, 1561-1570.e3.	2.4	7
79	Calcium intake and colon cancer risk subtypes by tumor molecular characteristics. Cancer Causes and Control, 2019, 30, 637-649.	0.8	6
80	Post-colonoscopy colorectal cancer: the key role of molecular pathological epidemiology. Translational Gastroenterology and Hepatology, 2017, 2, 9-9.	1.5	5
81	The Relationship Between Twin Language, Twins' Close Ties, and Social Competence. Twin Research and Human Genetics, 2014, 17, 27-37.	0.3	4
82	All Biomedical and Health Science Researchers, Including Laboratory Physicians and Scientists, Need Adequate Education and Training in Study Design and Statistics. Clinical Chemistry, 2016, 62, 1039-1040.	1.5	4
83	A longitudinal twin study on Tojikomori and depressive symptoms in Japanese elderly. Psychogeriatrics, 2016, 16, 255-262.	0.6	2
84	Comprehensive molecular characterization of colorectal cancer reveals genomic predictors of immune cell infiltrates Journal of Clinical Oncology, 2015, 33, 3505-3505.	0.8	2
85	Enrichment of germline DNA-repair gene mutations in patients with colorectal cancer Journal of Clinical Oncology, 2017, 35, 1500-1500.	0.8	1
86	Reply. Gastroenterology, 2014, 147, 246-247.	0.6	0
87	Novel driver genes and genomic predictors of immune infiltrates in colorectal cancer Journal of Clinical Oncology, 2016, 34, 557-557.	0.8	Ο
88	Clinical actionability of germline testing in patients with limited colorectal polyps Journal of Clinical Oncology, 2017, 35, e13027-e13027.	0.8	0
89	Body Mass Index and Other Anthropomorphic Variables in Relation to Risk of Colorectal Carcinoma Subtypes Classified by Tumor Differentiation Status. FASEB Journal, 2018, 32, 677.9.	0.2	0
90	Tumor Nuclear <i>YAP1</i> Expression Status and Molecular Characteristics in relation to Immune Response to Colorectal Carcinoma. FASEB Journal, 2018, 32, 406.5.	0.2	0

#	Article	IF	CITATIONS
91	Multiplexed Immunoâ€Profiling of the Colorectal Carcinoma Microenvironment Using Archival Human Tissue. FASEB Journal, 2018, 32, 818.4.	0.2	0
92	Bifidobacterium Genus in Colorectal Carcinoma Tissue in relation to Tumor Characteristics and Patient Survival. FASEB Journal, 2018, 32, 407.3.	0.2	0