
Luis GonzÃ;lez-Candelas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3630907/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of the antifungal protein PgAFP on the proteome and patulin production of Penicillium expansum on apple-based medium. International Journal of Food Microbiology, 2022, 363, 109511.	4.7	3
2	Functional Role of Aspergillus carbonarius AcOTAbZIP Gene, a bZIP Transcription Factor within the OTA Gene Cluster. Toxins, 2021, 13, 111.	3.4	14
3	Albedo- and Flavedo-Specific Transcriptome Profiling Related to Penicillium digitatum Infection in Citrus Fruit. Foods, 2021, 10, 2196.	4.3	5
4	EFE-Mediated Ethylene Synthesis Is the Major Pathway in the Citrus Postharvest Pathogen Penicillium digitatum during Fruit Infection. Journal of Fungi (Basel, Switzerland), 2020, 6, 175.	3.5	9
5	Elaborated regulation of griseofulvin biosynthesis in Penicillium griseofulvum and its role on conidiation and virulence. International Journal of Food Microbiology, 2020, 328, 108687.	4.7	13
6	Editorial: Interplay Between Fungal Pathogens and Fruit Ripening. Frontiers in Plant Science, 2020, 11, 275.	3.6	1
7	In-Depth Characterization of Bioactive Extracts from Posidonia oceanica Waste Biomass. Marine Drugs, 2019, 17, 409.	4.6	34
8	Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits. Food Microbiology, 2019, 84, 103266.	4.2	16
9	Functional and Pharmacological Analyses of the Role of Penicillium digitatum Proteases on Virulence. Microorganisms, 2019, 7, 198.	3.6	13
10	PdMFS1 Transporter Contributes to Penicilliun digitatum Fungicide Resistance and Fungal Virulence during Citrus Fruit Infection. Journal of Fungi (Basel, Switzerland), 2019, 5, 100.	3.5	30
11	Identification of pathogenicity-related genes and the role of a subtilisin-related peptidase S8 (PePRT) in authophagy and virulence of Penicillium expansum on apples. Postharvest Biology and Technology, 2019, 149, 209-220.	6.0	27
12	Identification and Functional Analysis of NLP-Encoding Genes from the Postharvest Pathogen Penicillium expansum. Microorganisms, 2019, 7, 175.	3.6	28
13	Involvement of abscisic acid in the resistance of citrus fruit to Penicillium digitatum infection. Postharvest Biology and Technology, 2019, 154, 31-40.	6.0	20
14	Lightâ€emitting Diode Blue Light Alters the Ability of <i>Penicillium digitatum</i> to Infect Citrus Fruits. Photochemistry and Photobiology, 2018, 94, 1003-1009.	2.5	10
15	Unravelling the contribution of the Penicillium expansum PeSte12 transcription factor to virulence during apple fruit infection. Food Microbiology, 2018, 69, 123-135.	4.2	37
16	Functional Characterization of the alb1 Orthologue Gene in the Ochratoxigenic Fungus Aspergillus carbonarius (AC49 strain). Toxins, 2018, 10, 120.	3.4	8
17	Differential contribution of the two major polygalacturonases from Penicillium digitatum to virulence towards citrus fruit. International Journal of Food Microbiology, 2018, 282, 16-23.	4.7	28
18	Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits. Frontiers in Plant Science, 2017, 8, 1113.	3.6	30

#	Article	IF	CITATIONS
19	Transcriptomic Response of Resistant (Pl613981–Malus sieversii) and Susceptible ("Royal Galaâ€) Genotypes of Apple to Blue Mold (Penicillium expansum) Infection. Frontiers in Plant Science, 2017, 8, 1981.	3.6	40
20	Identification and characterization of LysM effectors in Penicillium expansum. PLoS ONE, 2017, 12, e0186023.	2.5	46
21	De novo sequencing and detection of secondary metabolite gene clusters of <i>Penicillium griseofulvum</i> . Acta Horticulturae, 2016, , 157-162.	0.2	0
22	Molecular aspects in pathogen-fruit interactions: Virulence and resistance. Postharvest Biology and Technology, 2016, 122, 11-21.	6.0	136
23	Effect of oxidant stressors and phenolic antioxidants on the ochratoxigenic fungus <i>Aspergillus carbonarius</i> . Journal of the Science of Food and Agriculture, 2016, 96, 169-177.	3.5	11
24	Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics, 2016, 17, 19.	2.8	70
25	Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits. Plant Physiology and Biochemistry, 2016, 103, 154-166.	5.8	25
26	Genome, Transcriptome, and Functional Analyses of <i>Penicillium expansum</i> Provide New Insights Into Secondary Metabolism and Pathogenicity. Molecular Plant-Microbe Interactions, 2015, 28, 232-248.	2.6	183
27	Identification and functional analysis of <i><scp>P</scp>enicillium digitatum</i> genes putatively involved in virulence towards citrus fruit. Molecular Plant Pathology, 2015, 16, 262-275.	4.2	67
28	The loss of the inducible Aspergillus carbonarius MFS transporter MfsA leads to ochratoxin A overproduction. International Journal of Food Microbiology, 2014, 181, 1-9.	4.7	10
29	AN -OMICS INSIGHT INTO THE PATHOGENICITY OF PENICILLIUM DIGITATUM: AN OVERVIEW. Acta Horticulturae, 2014, , 191-198.	0.2	1
30	Citrus phenylpropanoids and defence against pathogens. Part II: Gene expression and metabolite accumulation in the response of fruits to Penicillium digitatum infection. Food Chemistry, 2013, 136, 285-291.	8.2	50
31	Citrus phenylpropanoids and defence against pathogens. Part I: Metabolic profiling in elicited fruits. Food Chemistry, 2013, 136, 178-185.	8.2	63
32	Characterization and disruption of the cipC gene in the ochratoxigenic fungus Aspergillus carbonarius. Food Research International, 2013, 54, 697-705.	6.2	18
33	Wound response in orange as a resistance mechanism against Penicillium digitatum (pathogen) and P. expansum (non-host pathogen). Postharvest Biology and Technology, 2013, 78, 113-122.	6.0	30
34	The pH signaling transcription factor PacC is required for full virulence in Penicillium digitatum. Applied Microbiology and Biotechnology, 2013, 97, 9087-9098.	3.6	88
35	Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus) Tj ETQq1 1 2753-2767.	0.784314 4.8	rgBT /Ovei 48
36	Use of GFP-tagged strains of Penicillium digitatum and Penicillium expansum to study host-pathogen interactions in oranges and apples. International Journal of Food Microbiology, 2012, 160, 162-170.	4.7	41

#	Article	IF	CITATIONS
37	Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genomics, 2012, 13, 646.	2.8	205
38	Transcriptomic profiling of citrus fruit peel tissues reveals fundamental effects of phenylpropanoids and ethylene on induced resistance. Molecular Plant Pathology, 2011, 12, 879-897.	4.2	56
39	Development of a green fluorescent tagged strain of Aspergillus carbonarius to monitor fungal colonization in grapes. International Journal of Food Microbiology, 2011, 148, 135-140.	4.7	36
40	Effect of high-temperature-conditioning treatments on quality, flavonoid composition and vitamin C of cold stored †Fortune' mandarins. Food Chemistry, 2011, 128, 1080-1086.	8.2	44
41	EFFECT OF HEAT-CONDITIONING TREATMENTS ON QUALITY AND PHENOLIC COMPOSITION OF 'FORTUNE' MANDARIN FRUIT. Acta Horticulturae, 2010, , 1333-1340.	0.2	0
42	CHARACTERIZATION OF DIFFERENTIALLY EXPRESSED TRANSCRIPTS IN QUERCETIN-TREATED APPLES BY SUPPRESSION SUBTRACTIVE HYBRIDIZATION. Acta Horticulturae, 2010, , 1691-1695.	0.2	1
43	Epicuticular wax content and morphology as related to ethylene and storage performance of †Navelate' orange fruit. Postharvest Biology and Technology, 2010, 55, 29-35.	6.0	71
44	Biochemical and molecular characterization of induced resistance against Penicillium digitatum in citrus fruit. Postharvest Biology and Technology, 2010, 56, 31-38.	6.0	75
45	Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biology and Technology, 2010, 56, 1-11.	6.0	61
46	A transcriptomic approach highlights induction of secondary metabolism in citrus fruit in response to Penicillium digitatum infection. BMC Plant Biology, 2010, 10, 194.	3.6	95
47	Genes differentially expressed by Aspergillus carbonarius strains under ochratoxin A producing conditions. International Journal of Food Microbiology, 2010, 142, 170-179.	4.7	19
48	TRANSCRIPTOMIC ANALYSIS OF ETHYLENE-INDUCED TOLERANCE TO NON-CHILLING PEEL PITTING IN CITRUS FRUIT. Acta Horticulturae, 2009, , 555-560.	0.2	6
49	Clobal Regulation of Genes in Citrus Fruit in Response to the Postharvest Pathogen Penicillium digitatum. , 2009, , 57-67.		Ο
50	HIGH-THROUGHPUT APPROACHES TO THE IDENTIFICATION OF CITRUS GENES INVOLVED IN FRUIT RESPONSE TO PENICILLIUM DIGITATUM INFECTION. Acta Horticulturae, 2007, , 229-233.	0.2	1
51	Spatial study of antioxidant enzymes, peroxidase and phenylalanine ammonia-lyase in the citrus fruit–Penicillium digitatum interaction. Postharvest Biology and Technology, 2006, 39, 115-124.	6.0	116
52	Over-production of the major exoglucanase of leads to an increase in the aroma of wine. International Journal of Food Microbiology, 2005, 103, 57-68.	4.7	46
53	Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 2005, 57, 375-391.	3.9	104
54	UNDERSTANDING THE BASIS OF CHILLING INJURY IN CITRUS FRUIT. Acta Horticulturae, 2005, , 831-842.	0.2	24

#	Article	IF	CITATIONS
55	GENOMIC APPROACHES TO POSTHARVEST BIOTIC AND ABIOTIC STRESSES OF CITRUS FRUIT. Acta Horticulturae, 2005, , 247-254.	0.2	4
56	Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. Journal of Experimental Botany, 2005, 56, 2183-2193.	4.8	78
57	Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. International Journal of Food Microbiology, 2003, 89, 163-170.	4.7	58
58	Isolation and characterization of genes differentially expressed during the interaction between apple fruit and Penicillium expansum. Molecular Plant Pathology, 2003, 4, 447-457.	4.2	39
59	Complexation of Imazalil with β-Cyclodextrin, Residue Uptake, Persistence, and Activity against Penicillium Decay in Citrus Fruit Following Postharvest Dip Treatments. Journal of Agricultural and Food Chemistry, 2002, 50, 6790-6797.	5.2	25
60	IDENTIFICATION OF A PEPTIDE WITH SPECIFIC ACTIVITY AGAINST FUNGI THAT CAUSE POSTHARVEST DECAY IN FRUITS. Acta Horticulturae, 2001, , 447-448.	0.2	1
61	The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. International Journal of Food Microbiology, 2000, 59, 179-183.	4.7	54
62	Requirement for either a host- or pectin-induced pectate lyase for infection of Pisum sativum by Nectriahematococca. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9813-9818.	7.1	127
63	Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits. Molecular Plant-Microbe Interactions, 2000, 13, 837-846.	2.6	69
64	The abfB gene encoding the major α-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiology (United Kingdom), 1999, 145, 735-741.	1.8	65
65	Construction of Aspergillus nidulans strains producing enzymes of potential use in enology. Biotechnology Letters, 1998, 20, 33-35.	2.2	2
66	Title is missing!. Plant Cell, Tissue and Organ Culture, 1998, 52, 123-131.	2.3	7
67	Somatic hybridization between an albino Cucumis melo L. mutant and Cucumis myriocarpus Naud Plant Science, 1998, 132, 179-190.	3.6	10
68	Heterologous Expression of aCandida molischianaAnthocyanin-β-glucosidase in a Wine Yeast Strain. Journal of Agricultural and Food Chemistry, 1998, 46, 354-360.	5.2	52
69	Transformants of Trichoderma longibrachiatum Overexpressing the β-1,4-Endoglucanase Gene egl1 Show Enhanced Biocontrol of Pythium ultimum on Cucumber. Phytopathology, 1998, 88, 673-677.	2.2	80
70	Glucose-Tolerant Expression ofTrichoderma longibrachiatumEndoglucanase I, an Enzyme Suitable for Use in Wine Production. Journal of Agricultural and Food Chemistry, 1997, 45, 2359-2362.	5.2	15
71	Identification of a NovelpelDGene Expressed Uniquely in Planta byFusarium solanif. sp.pisi(Nectria) Tj ETQq1 1 0. Archives of Biochemistry and Biophysics, 1996, 332, 305-312.	784314 rg 3.0	gBT /Overlock 53
72	Expression in a wine yeast strain of the Aspergillus niger abfB gene. FEMS Microbiology Letters, 1996, 145, 189-194.	1.8	2

#	Article	IF	CITATIONS
73	Expression in a wine yeast strain of theAspergillus niger abfBgene. FEMS Microbiology Letters, 1996, 145, 189-194.	1.8	48
74	Cloning of a novel constitutively expressed pectate lyase gene pelB from Fusarium solani f. sp. pisi (Nectria haematococca, mating type VI) and characterization of the gene product expressed in Pichia pastoris. Journal of Bacteriology, 1995, 177, 7070-7077.	2.2	65
75	Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. FEMS Microbiology Letters, 1995, 126, 263-269.	1.8	43
76	Cloning of a New Pectate Lyase GenepelCfromFusarium solanif. sp.pisi(Nectria haematococca,Mating) Tj ETQq0 C Biochemistry and Biophysics, 1995, 323, 352-360.	0 rgBT /0 3.0	Overlock 10 T 42
77	Construction of a recombinant wine yeast strain expressing a fungal pectate lyase gene. FEMS Microbiology Letters, 1995, 126, 263-269.	1.8	4
78	Molecular cloning and transcriptional analysis of the Aspergillus terreus gla1 gene encoding a glucoamylase. Applied and Environmental Microbiology, 1995, 61, 399-402.	3.1	11
79	Transcriptional regulation of theTrichoderma longibrachiatum egl1gene. FEMS Microbiology Letters, 1994, 122, 303-307.	1.8	6
80	Transcriptional regulation of the Trichoderma longibrachiatum egl1 gene. FEMS Microbiology Letters, 1994, 122, 303-307.	1.8	1
81	Isolation and analysis of a novel inducible pectate lyase gene from the phytopathogenic fungus Fusarium solani f. sp. pisi (Nectria haematococca, mating population VI). Journal of Bacteriology, 1992, 174, 6343-6349.	2.2	67
82	Sequences and homology analysis of two genes encoding β-glucosidases from Bacillus polymyxa. Gene, 1990, 95, 31-38.	2.2	63
83	Cloning and characterization of two genes from Bacillus polymyxa expressing beta-glucosidase activity in Escherichia coli. Applied and Environmental Microbiology, 1989, 55, 3173-3177.	3.1	33
84	Expression of an endoglucanase gene fromClostridium cellulolyticum inEscherichia coli. Journal of Industrial Microbiology, 1988, 3, 365-371.	0.9	23