
Rafael Madueno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3630760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functionalizing hydrogen-bonded surface networks with self-assembled monolayers. Nature, 2008, 454, 618-621.	13.7	358
2	Role of the Functionalization of the Gold Nanoparticle Surface on the Formation of Bioconjugates with Human Serum Albumin. Journal of Physical Chemistry C, 2012, 116, 10430-10437.	1.5	74
3	Stabilization of Cold Nanoparticles by 6-Mercaptopurine Monolayers. Effects of the Solvent Properties. Journal of Physical Chemistry B, 2006, 110, 17840-17847.	1.2	56
4	Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode. Electrochimica Acta, 2008, 53, 8026-8033.	2.6	46
5	A voltammetric study of 6-mercaptopurine monolayers on polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 2001, 506, 92-98.	1.9	45
6	Electrochemistry of Molecule-like Au25Nanoclusters Protected by Hexanethiolate. Journal of Physical Chemistry C, 2009, 113, 8756-8761.	1.5	44
7	Effective replacement of cetyltrimethylammonium bromide (CTAB) by mercaptoalkanoic acids on gold nanorod (AuNR) surfaces in aqueous solutions. Nanoscale, 2020, 12, 658-668.	2.8	39
8	The direct electrochemistry of cytochrome c at a hanging mercury drop electrode modified with 6-mercaptopurine. Journal of Electroanalytical Chemistry, 1998, 451, 89-93.	1.9	30
9	Magnetic Langmuirâ^'Blodgett Films of Ferritin with Different Iron Contents. Langmuir, 2006, 22, 6993-7000.	1.6	29
10	Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties. Journal of Colloid and Interface Science, 2017, 505, 1165-1171.	5.0	29
11	Characterization of 6-mercaptopurine monolayers on Hg surfaces. Journal of Electroanalytical Chemistry, 1998, 442, 107-112.	1.9	27
12	An Electrochemical Study of the SAMs of 6-Mercaptopurine (6MP) at Hg and Au(111) Electrodes in Alkaline Media. Langmuir, 2002, 18, 3903-3909.	1.6	26
13	Formation of 1,8-Octanedithiol Mono- and Bilayers under Electrochemical Control. Journal of Physical Chemistry C, 2010, 114, 3568-3574.	1.5	25
14	Facile Exchange of Ligands on the 6-Mercaptopurine-Monolayer Protected Gold Clusters Surface. Journal of Physical Chemistry C, 2010, 114, 15955-15962.	1.5	25
15	Influence of the Solution pH in the 6-Mercaptopurine Self-Assembled Monolayer (6MP-SAM) on a Au(111) Single-Crystal Electrode. Langmuir, 2007, 23, 11027-11033.	1.6	22
16	Formation of a 1,8-Octanedithiol Self-Assembled Monolayer on Au(111) Prepared in a Lyotropic Liquid-Crystalline Medium. Langmuir, 2010, 26, 11790-11796.	1.6	22
17	An electrochemical study of 6-thioguanine monolayers on a mercury electrode in acid and neutral solutions. Journal of Electroanalytical Chemistry, 2004, 565, 301-310.	1.9	21
18	Synthesis, Characterization, and Double Layer Capacitance Charging of Nanoclusters Protected by 6-Mercaptopurine. Journal of Physical Chemistry C, 2009, 113, 5186-5192.	1.5	20

RAFAEL MADUENO

#	Article	IF	CITATIONS
19	Influence of the Global Charge of the Protein on the Stability of Lysozyme–AuNP Bioconjugates. Journal of Physical Chemistry C, 2014, 118, 22274-22283.	1.5	15
20	Formation of Mixed Monolayers from 11-Mercaptoundecanoic Acid and Octanethiol on Au(111) Single Crystal Electrode under Electrochemical Control. Journal of Physical Chemistry C, 2013, 117, 24307-24316.	1.5	14
21	Influence of Patterning in the Acid–Base Interfacial Properties of Homogeneously Mixed CH ₃ - and COOH-Terminated Self-Assembled Monolayers. Journal of Physical Chemistry C, 2018, 122, 2854-2865.	1.5	14
22	Hemoglobin becomes electroactive upon interaction with surface-protected Au nanoparticles. Talanta, 2018, 176, 667-673.	2.9	13
23	The kinetics of the dissolution of 6-mercaptopurine self-assembled monolayers on Au(111) and Hg electrodes. Journal of Electroanalytical Chemistry, 2005, 576, 197-203.	1.9	12
24	Electrochemical and AFM Study of the 2D-Assembly of Colloidal Gold Nanoparticles on Dithiol SAMs Tuned by Ionic Strength. Journal of Physical Chemistry C, 2014, 118, 14617-14628.	1.5	11
25	Characterization of a self-assembled monolayer of O-(2-Mercaptoethyl)-O′-methyl-hexa(ethylene) Tj ETQq1 1	0.784314 1.9	rgBT /Over
26	Formation and Dissolution Processes of the 6-Thioguanine (6TG) Self-Assembled Monolayer. A Kinetic Study. Journal of Physical Chemistry B, 2005, 109, 1491-1498.	1.2	7
27	Formation of 2-D Crystalline Intermixed Domains at the Molecular Level in Binary Self-Assembled Monolayers from a Lyotropic Mixture. Journal of Physical Chemistry C, 2016, 120, 8595-8606.	1.5	7
28	3D Gold Nanocrystal Arrays: A Framework for Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 2360-2364.	1.5	5
29	Study of the self-assembly process of an oligo(ethylene glycol)-thioacetyl substituted theophylline (THEO) on gold substrates. Journal of Electroanalytical Chemistry, 2018, 823, 663-671.	1.9	5
30	Distinct thermoresponsive behaviour of oligo- and poly-ethylene glycol protected gold nanoparticles in concentrated salt solutions. Nanoscale Advances, 2021, 3, 4767-4779.	2.2	5
31	Comment on "The structure and formation of hydrogen-bonded molecular networks on Au(111) surfaces revealed by scanning tunnelling and torsional-tapping atomic force microscopy―by V. V. Korolkov, N. Mullin, S. Allen, C. J. Roberts, J. K. Hobbs and S. J. B. Tendler, Phys. Chem. Chem. Phys., 2012, 14, 15909. Physical Chemistry Chemical Physics. 2013, 15, 14126.	1.3	3
32	Electrochemical evaluation of the grafting density of self-assembled monolayers of polyethylene glycol of different chain lengths formed by the grafting to approach under conditions close to the cloud point. Journal of Electroanalytical Chemistry, 2022, , 116294.	1.9	3
33	Self-assembled monolayers of O-(2-Mercaptoethyl)-O′-methyl-hexa(ethylene glycol) (EG7-SAM) on gold electrodes. Effects of the nature of solution/electrolyte on formation and electron transfer blocking characteristics. Journal of Electroanalytical Chemistry, 2022, 914, 116303.	1.9	3
34	Characterization of self-assembled Bis[2-(2-bromoisobutyryloxy) undecyl] disulphide (DTBU) on gold surfaces suitable for use in surface-initiated atom transfer radical polymerization (SI-ATRP). Journal of Electroanalytical Chemistry, 2022, 918, 116515.	1.9	1
35	Modification of metal substrates and its application to the study of redox proteins. Progress in Biotechnology, 1998, , 697-702.	0.2	0