Yassine Slimani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3630633/publications.pdf Version: 2024-02-01

		14655	54911
275	11,311	66	84
papers	citations	h-index	g-index
281	281	281	3691
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrical and dielectric properties of Ni0.5Co0.5Ga Fe1.8–O4 (x ≤.0) spinel ferrite microspheres. Journal of Rare Earths, 2023, 41, 259-267.	4.8	11
2	Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. Journal of Rare Earths, 2023, 41, 682-688.	4.8	27
3	Structural, morphological and magnetic properties of (Ni0.5Co0.5)[Ga Gd Fe2–2]O4 nanoparticles prepared via sonochemical approach. Journal of Rare Earths, 2023, 41, 561-571.	4.8	4
4	Hydrogen-based sono-hybrid catalytic degradation and mitigation of industrially-originated dye-based pollutants. International Journal of Hydrogen Energy, 2023, 48, 6597-6612.	7.1	31
5	Fate and impact of maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles in barley (Hordeum vulgare) Tj	ETQ <u>q</u> 1 1 ().784314 rg∃ 18
6	Investigation on the structural, optical, and magnetic features of Dy3+ and Y3+ co-doped Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles. Journal of Molecular Structure, 2022, 1248, 131412.	3.6	27
7	Green synthesis of Nd substituted Co-Ni nanospinel ferrites: a structural, magnetic, and antibacterial/anticancer investigation. Journal Physics D: Applied Physics, 2022, 55, 055002.	2.8	19
8	Synthesis of different (RE)BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation. Materials Chemistry and Physics, 2022, 276, 125412.	4.0	23
9	Synthesis, characterization, and performance assessment of new composite ceramics towards radiation shielding applications. Journal of Alloys and Compounds, 2022, 899, 163173.	5.5	43
10	Experimental investigation on the physical properties and radiation shielding efficiency of YBa2Cu3Oy/M@M3O4 (M= Co, Mn) ceramic composites. Journal of Alloys and Compounds, 2022, 904, 164056.	5.5	43
11	Evaluation of the Radiation-Protective Properties of Bi (Pb)–Sr–Ca–Cu–O Ceramic Prepared at Different Temperatures with Silver Inclusion. Materials, 2022, 15, 1034.	2.9	12
12	Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Materials Today Nano, 2022, 18, 100186.	4.6	37
13	Structure, magnetoelectric, and anticancer activities of core-shell CoO·8Mn0.2R0.02Fe1·98O4@BaTiO3 nanocomposites (R = Ce, Eu, Tb, Tm, or Gd). Ceramics International, 2022, 48, 14640-14651.	4.8	16
14	Impact of Sm ³⁺ and Er ³⁺ Cations on the Structural, Optical, and Magnetic Traits of Spinel Cobalt Ferrite Nanoparticles: Comparison Investigation. ACS Omega, 2022, 7, 6292-6301.	3.5	40
15	Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics. Journal of Physics and Chemistry of Solids, 2022, 164, 110627.	4.0	27
16	Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route. Crystals, 2022, 12, 268.	2.2	15
17	Radiation shielding properties of bi-ferroic ceramics added with CNTs. Radiation Physics and Chemistry, 2022, 200, 110096.	2.8	22
18	Radiation shielding and structural features for different perovskites doped YBa2Cu3Oy composites. Ceramics International, 2022, 48, 18855-18865.	4.8	10

#	Article	IF	CITATIONS
19	A study on the conductivity, dielectric, and microwave properties of SrNbxYxFe12-2xO19 (0.00 ≤ â‰ÞTj ETC)q110.78	4314 rgBT /(
20	Investigation of transport properties, flux pinning mechanisms and fluctuations induced conductivity of SiO2 nanoparticles doped YBa2Cu3O7-d thick films on silver substrates. Ceramics International, 2022, 48, 10721-10732.	4.8	3
21	Effect of Bi3+ ions substitution on the structure, morphology, and magnetic properties of Co–Ni spinel ferrite nanofibers. Materials Chemistry and Physics, 2022, 284, 126071.	4.0	11
22	Structural investigation of Cu doped calcium ferrite (Ca1-xCuxFe2O4; x = 0, 0.2, 0.4, 0.6, 0.8, 1) nanomaterials prepared by co-precipitation method. Journal of Materials Research and Technology, 2022, 18, 705-719.	5.8	21
23	Sonochemical synthesis of Mn0.5Zn0.5ErxDyxFe2-2xO4 (xÂâ‰Â0.1) spinel nanoferrites: Magnetic and textural investigation. Journal of Molecular Structure, 2022, 1258, 132680.	3.6	7
24	An investigation on structural, optical and magnetic properties of hard-soft SrFe12O19/(CoEu0.02Fe1.98O4)x nanofiber composites. Journal of Alloys and Compounds, 2022, 905, 164240.	5.5	9
25	Impact of In3+ cations on structure and electromagnetic state of Mâ^'type hexaferrites. Journal of Energy Chemistry, 2022, 69, 667-676.	12.9	95
26	Structure, optical properties, and ionizing radiation shielding performance using Monte Carlo simulation for lead-free BTO perovskite ceramics doped with ZnO, SiO2, and WO3 oxides. Materials Science in Semiconductor Processing, 2022, 145, 106629.	4.0	36
27	Synthesis and design of vanadium intercalated spinal ferrite (Co0.5Ni0.5VxFe1.6â^'xO4) electrodes for high current supercapacitor applications. Journal of Energy Storage, 2022, 51, 104357.	8.1	29
28	Tuning the Structure, Magnetic, and High Frequency Properties of Scâ€Doped Sr _{0.5} Ba _{0.5} Sc <i>_x</i> Fe _{12â€} <i>_x</i> Hard/Soft Nanocomposites. Advanced Electronic Materials, 2022, 8, .	9< ₅ıı b>/N	iF e ∢sub>2 ⊧</td
29	Superconducting properties of YBCO bulk co-embedded by nano-BaTiO3 and WO3 particles. European Physical Journal Plus, 2022, 137, 1.	2.6	4
30	Sol–gel combustion synthesis and photocatalytic dye degradation studies of rare earth element Ce substituted Mn–Zn ferrite nanoparticles. Journal of Materials Research and Technology, 2022, 18, 5280-5289.	5.8	23
31	ErBaCuO/PbO ceramic composites: Synthesis, physical properties, and radiation shielding performance. Ceramics International, 2022, 48, 24355-24362.	4.8	2
32	Structural parameters, energy states and magnetic properties of the novel Se-doped NiFe2O4 ferrites as highly efficient electrocatalysts for HER. Ceramics International, 2022, 48, 24866-24876.	4.8	77
33	Advanced Progress in Magnetoelectric Multiferroic Composites. , 2022, , 1-35.		1
34	One-pot synthesis of hard/soft SrFe10O19/x(Ni0.8Zn0.2Fe1.8Cr0.2O4) nanocomposites: Electrical features and reflection losses. Ceramics International, 2022, 48, 25390-25401.	4.8	8
35	Rare earth (RE: La and Ce) elements doped ZnWO4 nanoparticles for enhanced photocatalytic removal of methylene blue dye from aquatic environment. Physica B: Condensed Matter, 2022, 639, 414028.	2.7	7

#	Article	IF	CITATIONS
37	Ultrasound-assisted synthesis and magnetic investigations of Ni0.4Cu0.4Zn0.2GaxGdxFe2-2xO4 (0.00 â‰≇€‰x â‰≇€‰0.04) nanosized spinel ferrites. Applied Physics A: Materials Science and Proces	ssīng, 202	22, ⁴ 128, .
38	BaTiO3/(Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4) composites: Analysis of the effect of Co0.8Ni0.1Mn0.1Fe1.9Ce0.1O4 doping at different concentrations on the structural, morphological, optical, magnetic, and magnetoelectric coupling properties of BaTiO3. Ceramics International, 2022, 48, 30499-30509.	4.8	18
39	Impact of sonication time on the structural and magnetic features of CoFe2O4/Ni0.8Cu0.1Zn0.1Fe2O4 hard-soft nanocomposites. Journal of Alloys and Compounds, 2022, 923, 166347.	5.5	5
40	Exploring the influence of varying pH on structural, electro-optical, magnetic and photo-Fenton properties of mesoporous ZnFe2O4 nanocrystals. Environmental Pollution, 2021, 272, 115983.	7.5	24
41	AC susceptibility and FC-ZFC magnetic properties of SrTb Fe12â^'O19 and SrTm Fe12â^'O19 hexaferrites: a comparative study. Journal of Rare Earths, 2021, 39, 1003-1009.	4.8	8
42	Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7-d superconductor. Journal of Alloys and Compounds, 2021, 852, 157019.	5.5	39
43	Impact of nickel substitution on structure, magneto-optical, electrical and acoustical properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 2021, 857, 157517.	5.5	44
44	Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Physica B: Condensed Matter, 2021, 606, 412660.	2.7	55
45	Delivery, fate and physiological effect of engineered cobalt ferrite nanoparticles in barley (Hordeum) Tj ETQq1 1 0	.784314 i 8.2	rg&T /Overloo
46	Perovskite's potential functionality in a composite structure. , 2021, , 181-202.		5
47	Flux pinning mechanisms of (YBa2Cu3Oy-d)1â^'x/(Dy2O3)x superconductors (x=0.1 and 0.5Âwt%). Ceramics International, 2021, 47, 6675-6682.	4.8	8
48	Investigation of AC susceptibility, dielectric and electrical properties of Tb–Tm co-substituted M-type Sr hexaferrites. Materials Chemistry and Physics, 2021, 260, 124162.	4.0	24
49	Ru-based perovskites/RGO composites for applications in high performance supercapacitors. , 2021, , 335-354.		6
50	Magnetic phases in superconducting, polycrystalline bulk FeSe samples. AIP Advances, 2021, 11, .	1.3	16
51	Defective/graphitic synergy in a heteroatom-interlinked-triggered metal-free electrocatalyst for high-performance rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2021, 9, 18222-18230.	10.3	135
52	Anti-microbial and anti-cancer activities of Mn _{0.5} Zn _{0.5} Dy _x Fe _{2-x} O ₄ Â(x ≤0.1) nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2021, 49, 493-499.	2.8	18
53	Structural, optical, and electrochemical investigations of sb-substituted mesoporous SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 4132-4145.	2.2	12
54	Synthesis and characterization of magnetically separable La _{1â^'<i>x</i>} Bi _{<i>x</i>} Cr _{1â^'<i>y</i>} Fe _{<i>y</i>} O ₃ and photocatalytic activity evaluation under visible light. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1413-1431.	2.8	11

#	Article	IF	CITATIONS
55	Influence of Ni substitution on opto-magnetic and electrochemical properties of CTAB-capped mesoporous SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 7630-7646.	2.2	17
56	Hydrothermal route for the synthesis of manganese ferrite nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1433-1445.	2.8	11
57	Enhancing oxygen reduction reaction performance via CNTs/graphene supported iron protoporphyrin IX: A hybrid nanoarchitecture electrocatalyst. Diamond and Related Materials, 2021, 113, 108272.	3.9	54
58	Synthesis, Characterization, Anti-Cancer Analysis of Sr0.5Ba0.5DyxSmxFe8â^'2xO19 (0.00 ≤ ≤.0) Microsphere Nanocomposites. Nanomaterials, 2021, 11, 700.	4.1	13
59	Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (rGO)/zirconium substituted cobalt ferrite (CoO·5ZrO·5Fe2O4) nanocomposites. Physica B: Condensed Matter, 2021, 605, 412784.	2.7	23
60	Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties. Arabian Journal of Chemistry, 2021, 14, 102992.	4.9	46
61	Kinetic Modeling for Photo-Assisted Penicillin G Degradation of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤0.05) Nanospinel Ferrites. Nanomaterials, 2021, 11, 970.	4.1	10
62	Review on recent advances of zinc substituted cobalt ferrite nanoparticles: Synthesis characterization and diverse applications. Ceramics International, 2021, 47, 10512-10535.	4.8	76
63	Review on Recent Advances of Synthesis, Magnetic Properties, and Water Treatment Applications of Cobalt Ferrite Nanoparticles and Nanocomposites. Journal of Superconductivity and Novel Magnetism, 2021, 34, 995-1018.	1.8	62
64	Influence of Dy ³⁺ Ions on the Microstructures and Magnetic, Electrical, and Microwave Properties of [Ni _{0.4} Cu _{0.2} Zn _{0.4}](Fe _{2–<i>x</i>} Dy _{<i>x</i>} (0.00 ≤i>x ≤0.04) Spinel Ferrites. ACS Omega, 2021, 6, 10266-10280.	∙)O∛ร่นี่b>4	
65	Micro-emulsion approach for the fabrication of La1â^'xGdxCr1â^'yFeyO3: Magnetic, dielectric and photocatalytic activity evaluation under visible light irradiation. Results in Physics, 2021, 23, 104023.	4.1	20
66	Highly active sites of Pt/Er dispersed N-doped hierarchical porous carbon for trifunctional electrocatalyst. Chemical Engineering Journal, 2021, 409, 128205.	12.7	94
67	Review on functional bi-component nanocomposites based on hard/soft ferrites: Structural, magnetic, electrical and microwave absorption properties. Nano Structures Nano Objects, 2021, 26, 100728.	3.5	63
68	Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials, 2021, 11, 1014.	4.1	24
69	Eco-benign approach to produce biodiesel from neem oil using heterogeneous nano-catalysts and process optimization. Environmental Technology and Innovation, 2021, 22, 101430.	6.1	30
70	Impact of calcination temperature on electrical and dielectric properties of SrGa0.02Fe11.98O19-Zn0.5Ni0.5Fe2O4 hard/soft nanocomposites. Journal of Materials Science: Materials in Electronics, 2021, 32, 16589-16600.	2.2	7
71	Ultrasonic Synthesis and Biomedical Application of Mn0.5Zn0.5ErxYxFe2â^'2xO4 Nanoparticles. Biomolecules, 2021, 11, 703.	4.0	7
72	Investigation of hard/soft <scp> CoFe ₂ O ₄ </scp> / <scp> NiSc ₀ </scp> _. <scp> ₀₃ Fe ₁ </scp> _. <scp> ₉₇ O ₄ ₉₇ O</scp>	4.5	31

#	Article	IF	CITATIONS
73	Designing of Co0.5Ni0.5GaxFe2â^'xO4 (0.0 ≤ ≤ .0) Microspheres via Hydrothermal Approach and Their Selective Inhibition on the Growth of Cancerous and Fungal Cells. Pharmaceutics, 2021, 13, 962.	4.5	13
74	Evaluation of Cu–MgFe2O4 spinel nanoparticles for photocatalytic and antimicrobial activates. Journal of Physics and Chemistry of Solids, 2021, 153, 110010.	4.0	49
75	Construction of NiCo/graphene nanocomposite coating with bulges-like morphology for enhanced mechanical properties and corrosion resistance performance. Journal of Alloys and Compounds, 2021, 867, 159138.	5.5	56
76	A study on the electrical and dielectric properties of SrGdxFe12â^xO19 (x = 0.00–0.05) nanosized M-t hexagonal ferrites. Journal of Materials Science: Materials in Electronics, 2021, 32, 18317-18329.	ype 2.2	6
77	Sm–Dy co-substituted Sr hexaferrite microspheres: An investigation on their structural, magnetic, optical, and porosity characteristics. Ceramics International, 2021, 47, 25131-25141.	4.8	7
78	Anisotropy of the electrical properties of a single crystal of BaFe11.25Ti0.75O19 M-type barium hexaferrite. Journal of Solid State Chemistry, 2021, 298, 122104.	2.9	8
79	(BaTiO ₃) _{1â€x} + (Co _{0.5} Ni _{0.5} Nb _{0.06} Fe _{1.94} O ₄) _x nanocomposites: Structure, morphology, magnetic and dielectric properties. Journal of the American Ceramic Society. 2021, 104, 5648-5658.	3.8	39
80	Determination of structural features of different Perovskite ceramics and investigation of ionizing radiation shielding properties. Journal of Materials Science: Materials in Electronics, 2021, 32, 20867-20881.	2.2	31
81	Intergrain connectivity in YBa2Cu3O7-δ superconductor added with Dy2O3 nanoparticles: AC susceptibility investigation. Current Applied Physics, 2021, 27, 89-97.	2.4	3
82	Correlation between chemical composition, electrical, magnetic and microwave properties in Dy-substituted Ni-Cu-Zn ferrites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 270, 115202.	3.5	34
83	Impact of Gd substitution on the structure, hyperfine interactions, and magnetic properties of Sr hexaferrites. Ceramics International, 2021, 47, 33853-33864.	4.8	29
84	Structural, Magnetic, and Mossbauer Parameters' Evaluation of Sonochemically Synthesized Rare Earth Er ³⁺ and Y ³⁺ lons-Substituted Manganese–Zinc Nanospinel Ferrites. ACS Omega, 2021, 6, 22429-22438.	3.5	7
85	Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. Arabian Journal of Chemistry, 2021, 14, 103261.	4.9	39
86	Preparation and characterization of high-Tc (YBa2Cu3O7-Î)1-x/(CNTs)x superconductors with highly boosted superconducting performances. Ceramics International, 2021, 47, 23539-23548.	4.8	15
87	Hexagonal basalt-like ceramics LaxMg1-xTiO3 (x = 0 and 0.5) contrived via deep eutectic solvent for selective electrochemical detection of dopamine. Physica B: Condensed Matter, 2021, 615, 413068.	2.7	15
88	Intergranular properties of polycrystalline YBa2Cu3O7â^îî´superconductor added with nanoparticles of WO3 and BaTiO3 as artificial pinning centers. Ceramics International, 2021, 47, 34260-34268.	4.8	12
89	Structural and Magnetic Properties of Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4/ZnFe2O4 Spinel Ferrite Nanocomposites: Comparative Study between Sol-Gel and Pulsed Laser Ablation in Liquid Approaches. Nanomaterials, 2021, 11, 2461.	4.1	62
90	Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0.02Zr0.02Fe11.96O19 with variable spinel phase MFe2O4 (M = Mn, Co, Cu, and Zn). Ceramics International, 2021, 47, 35209-35223.	4.8	35

#	Article	IF	CITATIONS
91	Enabling the fast lithium storage of large-scalable γ-Fe2O3/Carbon nanoarchitecture anode material with an ultralong cycle life. Journal of Industrial and Engineering Chemistry, 2021, 101, 379-386.	5.8	28
92	Effects of Ce–Dy rare earths co-doping on various features of Ni–Co spinel ferrite microspheres prepared via hydrothermal approach. Journal of Materials Research and Technology, 2021, 14, 2534-2553.	5.8	35
93	Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties. Journal of Physics and Chemistry of Solids, 2021, 156, 110183.	4.0	40
94	Features of structure, magnetic state and electrodynamic performance of SrFe12â^'xInxO19. Scientific Reports, 2021, 11, 18342.	3.3	77
95	Electrospinning synthesis of Cd-substituted Ni–Co spinel ferrite nanofibers: an investigation into their structural and magnetic features. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	4
96	Impact of the exfoliated graphite on magnetic and microwave properties of the hexaferrite-based composites. Journal of Alloys and Compounds, 2021, 878, 160397.	5.5	19
97	Effect of zinc substitution on the physical and electrochemical properties of mesoporous SnO2 nanoparticles. Materials Chemistry and Physics, 2021, 273, 125122.	4.0	12
98	Effect of doping on dielectric and optical properties of barium hexaferrite: Photocatalytic performance under solar light irradiation. Ceramics International, 2021, 47, 31518-31526.	4.8	32
99	State of the art two-dimensional covalent organic frameworks: Prospects from rational design and reactions to applications for advanced energy storage technologies. Coordination Chemistry Reviews, 2021, 447, 214152.	18.8	73
100	YBCO superconductor added with one-dimensional TiO2 nanostructures: Frequency dependencies of AC susceptibility, FC-ZFC magnetization, and pseudo-gap studies. Journal of Alloys and Compounds, 2021, 883, 160887.	5.5	8
101	Alterations in the magnetic and electrodynamic properties of hard-soft Sr0.5Ba0.5Eu0.01Fe12O19/NixCuyZnwFe2O4 nanocomposites. Journal of Materials Research and Technology, 2021, 15, 1416-1429.	5.8	12
102	Electrical and dielectric properties of rare earth substituted hard-soft ferrite (Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4)x/(ZnFe2O4)y nanocomposites. Journal of Materials Research and Technology, 2021, 15, 969-983.	5.8	28
103	Morphological, structural, and magnetic characterizations of hard-soft ferrite nanocomposites synthesized via pulsed laser ablation in liquid. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115446.	3.5	13
104	Investigation on electrical and dielectric properties of hard/soft spinel ferrite nanocomposites of CoFe2O4/(NiSc0.03Fe1.97O4)x. Vacuum, 2021, 194, 110628.	3.5	19
105	Effect of Sr2+ Ion–Substituted Nickel Ferrite Nanoparticles Prepared by a Simple Microwave Combustion Method. Journal of Superconductivity and Novel Magnetism, 2021, 34, 971-980.	1.8	7
106	Nanomaterials for nanogenerator. , 2021, , 69-87.		2
107	Nanomaterials and nanotechnology for high-performance rechargeable battery. , 2021, , 343-363.		4
108	Green Chemistry and Sustainable Nanotechnological Developments: Principles, Designs, Applications,		1

#	ARTICLE ative study of sonochemically and hydrothermally synthesized Mn <mml:math <="" display="inline" id="d1e2472" th="" xmins:mml="http://www.w3.org/1998/Wath/Wath/With"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
109	altimg="sil1.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">0.5</mml:mi </mml:mrow></mml:msub> Zn <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2480"</mml:math 	3.5	11
110	Impact of Ar:O ₂ gas flow ratios on microstructure and optical characteristics of CeO ₂ -doped ZnO thin films by magnetron sputtering. Europhysics Letters, 2021, 135, 67003.	2.0	9
111	Photocatalytic degradation of reactive anionic dyes RB5, RR198 and RY145 via rare earth element (REE) lanthanum substituted CaTiO3 perovskite catalysts. Journal of Materials Research and Technology, 2021, 15, 5936-5947.	5.8	36
112	Impact of tin oxide on the structural features and radiation shielding response of some ABO3 perovskites ceramics (A = Ca, Sr, Ba; B = Ti). Applied Physics A: Materials Science and Process 1.	ing <u>,220</u> 21,	1271
113	AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. Journal of Alloys and Compounds, 2020, 812, 152150.	5.5	74
114	Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. Journal of Rare Earths, 2020, 38, 1103-1113.	4.8	22
115	Co-substitution of zirconium and neodymium on hyperfine interactions and AC susceptibility of SrFe12O19 nanohexaferrites. Journal of Rare Earths, 2020, 38, 265-273.	4.8	8
116	Microstructure, magnetic and optical properties of Nb3+ and Y3+ ions co-substituted Sr hexaferrites. Ceramics International, 2020, 46, 4610-4618.	4.8	35
117	Tb3+ substituted strontium hexaferrites: Structural, magnetic and optical investigation and cation distribution. Journal of Rare Earths, 2020, 38, 402-410.	4.8	19
118	Jahn-Teller Distortions and Infield Superconductivity of CuTl-1223 Phase. Journal of Superconductivity and Novel Magnetism, 2020, 33, 331-336.	1.8	3
119	Synthesis and characterization of Co1–2Ni Mn Ce Fe2–O4 nanoparticles. Journal of Rare Earths, 2020, 38, 188-194.	4.8	33
120	Magnetic Behavior and Nutrient Content Analyses of Barley (Hordeum vulgare L.) Tissues upon CoNd0.2Fe1.8O4 Magnetic Nanoparticle Treatment. Journal of Soil Science and Plant Nutrition, 2020, 20, 357-366.	3.4	14
121	Comparative study of sonochemically synthesized Co-Zr and Ni-Zr substituted Sr-hexaferrites: Magnetic and structural investigations. Journal of Magnetism and Magnetic Materials, 2020, 497, 165996.	2.3	24
122	Sonochemical synthesis of Dy3+ substituted Mn0.5Zn0.5Fe2â^'xO4 nanoparticles: Structural, magnetic and optical characterizations. Ultrasonics Sonochemistry, 2020, 61, 104836.	8.2	37
123	Dimensionality and superconducting parameters of YBa2Cu3O7â~'d/(WO3 NPs)x composites deduced from excess conductivity analysis. Materials Chemistry and Physics, 2020, 243, 122665.	4.0	18
124	Excess conductivity investigations of WO3 nanowires added to YBa2Cu3O7-d superconductor. Journal of Materials Science: Materials in Electronics, 2020, 31, 3023-3034.	2.2	7
125	AC-conduction mechanism via dielectric measurements of (Cr)x/(CuTl)-1223 nanoparticles-superconductor composites. Cryogenics, 2020, 105, 103021.	1.7	6
	Enhancement on the exchange coupling behavior of SrCo0.027r0.02Fe11.96O19/MFe2O4 (Mâ€⁻=â€⁻Co. Ni. Cu) Ti FTOol	0 0 rgBT /0

126

Enhancement on the exchange coupling behavior of SrCo0.02Zr0.02Fe11.96O19/MFe2O4 (M = Co, Ni, Cu,) Tj ETQq0 0 0 rgBT /Ov 2.3 71 2020, 499, 166308.

#	Article	IF	CITATIONS
127	A novel strategy for the synthesis of hard carbon spheres encapsulated with graphene networks as a low-cost and large-scalable anode material for fast sodium storage with an ultralong cycle life. Inorganic Chemistry Frontiers, 2020, 7, 402-410.	6.0	128
128	Synthesis and biological characterization of Mn0.5Zn0.5EuxDyxFe1.8-2xO4 nanoparticles by sonochemical approach. Materials Science and Engineering C, 2020, 109, 110534.	7.3	31
129	Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceramics International, 2020, 46, 7346-7354.	4.8	128
130	A study on the spectral, microstructural, and magnetic properties of Eu–Nd double-substituted Ba0.5Sr0.5Fe12O19 hexaferrites synthesized by an ultrasonic-assisted approach. Ultrasonics Sonochemistry, 2020, 62, 104847.	8.2	35
131	Exchange-coupling effect in hard/soft SrTb0.01Tm0.01Fe11.98O19/AFe2O4 (where A = Co, Ni, Zn, Cu and) Tj ETQ	9q1 1 0.78 4.8	34314 rgB⁻
132	Effect of Nd-Y co-substitution on structural, magnetic, optical and microwave properties of NiCuZn nanospinel ferrites. Journal of Materials Research and Technology, 2020, 9, 11278-11290.	5.8	33
133	Customized magnetic properties of (Mn0.5Zn0.5)[EuxNdxFe2-2x]O4 nanospinel ferrites synthesized via ultrasonic irradiation approach. Results in Physics, 2020, 19, 103350. Synthesis and Characterization of electrospun Ni-sminimath walassimple-"three" three approach and the Mathematical Science "three approximations of the second se	4.1	26
134	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1728" altimg="si32.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">0.5</mml:mi </mml:mrow></mml:msub> Co <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1736"</mml:math 	3.5	11
135	altimg="si33.svg"> <mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mi Strohgacorrelation.between Dy3+modecentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. Journal of Industrial and Engineering Chemistry, 2020, 90, 251-259.</mml:mi </mml:mrow></mml:msub>	5.8	103
136	Excess Conductivity Analysis of Polycrystalline FeSe Samples with the Addition of Ag. Materials, 2020, 13, 5018.	2.9	14
137	Microstructure, dielectric and microwave features of [Ni0.4Cu0.2Zn0.4](Fe2â^'Tb)O4 (x≤0.1) nanospinel ferrites. Journal of Materials Research and Technology, 2020, 9, 10608-10623.	5.8	25
138	Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceramics International, 2020, 46, 28877-28886.	4.8	96
139	Uptake, translocation, and physiological effects of hematite (α-Fe2O3) nanoparticles in barley (Hordeum vulgare L.). Environmental Pollution, 2020, 266, 115391.	7.5	43
140	Boosting oxygen reduction reaction activity by incorporating the iron phthalocyanine nanoparticles on carbon nanotubes network. Inorganic Chemistry Communication, 2020, 120, 108160.	3.9	50
141	Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 2020, 9, 572.	3.7	81
142	Peculiarities of the microwave properties of hard–soft functional composites SrTb _{0.01} Tm _{0.01} Fe _{11.98} O ₁₉ –AFe ₂ O _{4 (A = Co, Ni, Zn, Cu, or Mn). RSC Advances, 2020, 10, 32638-32651.}	<b suc>	92
143	Impact of Tm3+ and Tb3+ Rare Earth Cations Substitution on the Structure and Magnetic Parameters of Co-Ni Nanospinel Ferrite. Nanomaterials, 2020, 10, 2384.	4.1	42
144	Microstructure and Fluctuation-Induced Conductivity Analysis of Bi2Sr2CaCu2O8+δ (Bi-2212) Nanowire Fabrics. Crystals, 2020, 10, 986.	2.2	24

#	Article	IF	CITATIONS
145	Developing the magnetic, dielectric and anticandidal characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x hard/soft ferrite nanocomposites. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 344-362.	5.3	50
146	Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2Fe2O4) Hard–Soft Ferrite Nanocomposites: Structure, Magnetic and Microwave Properties. Nanomaterials, 2020, 10, 2134.	4.1	71
147	Magnetic properties, anticancer and antibacterial effectiveness of sonochemically produced Ce3+/Dy3+ co-activated Mn-Zn nanospinel ferrites. Arabian Journal of Chemistry, 2020, 13, 7403-7417.	4.9	53
148	Incorporation of Micro-nutrients (Nickel, Copper, Zinc, and Iron) into Plant Body Through Nanoparticles. Journal of Soil Science and Plant Nutrition, 2020, 20, 1872-1881.	3.4	11
149	Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. Journal of the European Ceramic Society, 2020, 40, 4022-4028.	5.7	52
150	SrCoxZrxFe12â^'2xO19 and SrNixZrxFe12â^'2xO19 hexaferrites: A Comparison Study of AC Susceptibility, FC-ZFC and hyperfine interactions. Chinese Journal of Physics, 2020, 66, 596-605.	3.9	12
151	Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. Journal of Alloys and Compounds, 2020, 841, 155667.	5.5	109
152	Structural, morphological and optical properties of multifunctional magnetic-luminescent ZnO@Fe3O4 nanocomposite. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114291.	2.7	41
153	Influence of Tm–Tb substitution on magnetic and optical properties of Ba–Sr hexaferrites prepared by ultrasonic assisted citrate sol-gel approach. Materials Chemistry and Physics, 2020, 253, 123324.	4.0	41
154	Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environmental Science and Pollution Research, 2020, 27, 34311-34321.	5.3	28
155	Synthesis of Dy-Y co-substituted manganese‑zinc spinel nanoferrites induced anti-bacterial and anti-cancer activities: Comparison between sonochemical and sol-gel auto-combustion methods. Materials Science and Engineering C, 2020, 116, 111186.	7.3	50
156	AC Conduction Mechanism in (Cu)x/(CuTl)-1223 Nanoparticles–Superconductor Composites. Journal of Low Temperature Physics, 2020, 199, 1268-1298.	1.4	3
157	Ultrasonic synthesis, magnetic and optical characterization of Tm3+ and Tb3+ ions co-doped barium nanohexaferrites. Journal of Solid State Chemistry, 2020, 286, 121310.	2.9	29
158	Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach. Results in Physics, 2020, 17, 103061.	4.1	99
159	Exchange-coupling behavior in SrTb _{0.01} Tm _{0.01} Fe _{11.98} O ₁₉ /(CoFe ₂ O _{4 hard/soft nanocomposites. New Journal of Chemistry, 2020, 44, 5800-5808.}	-< \ଶୀହ >)<:	sub‡@
160	Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 7786-7797.	2.2	74
161	Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 2020, 194, 110377.	6.0	66
162	Electrical and optical properties of NiO·5Co0.5-xCdxNd0.02Fe1·78O4 (x ≤0.25) spinel ferrite nanofibers. Ceramics International, 2020, 46, 24605-24614.	4.8	26

#	Article	IF	CITATIONS
163	Construction of well-designed 1D selenium–tellurium nanorods anchored on graphene sheets as a high storage capacity anode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 1750-1761.	6.0	64
164	Magnetic nanosensors and their potential applications. , 2020, , 143-155.		7
165	Impacts of Sol-Gel Auto-Combustion and Ultrasonication Approaches on Structural, Magnetic, and Optical Properties of Sm-Tm Co-Substituted Sr0.5Ba0.5Fe12O19 Nanohexaferrites: Comparative Study. Nanomaterials, 2020, 10, 272.	4.1	19
166	Magnetic nanoparticles based nanocontainers for biomedical application. , 2020, , 229-250.		6
167	Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceramics International, 2020, 46, 11124-11131.	4.8	126
168	Investigation of the crystal/magnetic structure, magnetic and optical properties of SrY _x Nb _x Fe _{12â^'2x} O ₁₉ (x ≤0.05) hexaferrites. Physica Scripta, 2020, 95, 055802.	2.5	17
169	Magnetic and microwave properties of SrFe12O19/MCe0.04Fe1.96O4 (M = Cu, Ni, Mn, Co and Zn) hard/soft nanocomposites. Journal of Materials Research and Technology, 2020, 9, 5858-5870.	5.8	102
170	Synthesis of Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. Journal of Biomolecular Structure and Dynamics, 2020, 39, 1-8.	3.5	26
171	Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Scientia Horticulturae, 2020, 265, 109223.	3.6	24
172	Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets. Diamond and Related Materials, 2020, 104, 107763.	3.9	91
173	Investigation of structural, morphological, optical, magnetic and dielectric properties of (1-x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. Journal of Magnetism and Magnetic Materials, 2020, 510, 166933.	2.3	89
174	Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. Journal of Sol-Gel Science and Technology, 2020, 95, 202-210.	2.4	26
175	Synthesis, characterization and magnetic investigation of Er-substituted electrospun NiFe ₂ O ₄ nanofibers. Physica Scripta, 2020, 95, 075801.	2.5	13
176	Comparative study of thermal fluctuation induced conductivity in YBa2Cu3O7-d containing Nano-Zn0.95Mn0.05O and Nano-Al2O3 particles. Solid State Sciences, 2020, 105, 106264.	3.2	16
177	Mössbauer Studies and Magnetic Properties of Cubic CuFe2O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2019, 32, 557-564.	1.8	74
178	Comparative Study of the Effect of Magnetic Nanoparticle CoFe2O4 on Fluctuation-Induced Conductivity of Y-123 and Y-358 Superconductors. Journal of Superconductivity and Novel Magnetism, 2019, 32, 511-519.	1.8	10
179	Microstructural, Optical, and Magnetic Properties of Vanadium-Substituted Nickel Spinel Nanoferrites. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1057-1065.	1.8	72
180	Ca2+/Mg2+ co-substituted strontium nanohexaferrites: magnetic investigation and Mossbauer	2.4	12

30	analysis. Journal of Sol-Gel Science and Technology, 2019, 92, 239-25	1.

#	Article	IF	CITATIONS
181	The Conductivity and Dielectric Properties of Neobium Substituted Sr-Hexaferrites. Nanomaterials, 2019, 9, 1168.	4.1	27
182	Tailored microstructures, optical and magnetic qualities of strontium hexaferrites: Consequence of Tm3+ and Tb3+ ions Co-substitution. Ceramics International, 2019, 45, 21385-21394.	4.8	28
183	Tb3+ ion substituted Sr-hexaferrites as high quality microwave absorbers. Journal of Magnetism and Magnetic Materials, 2019, 491, 165595.	2.3	19
184	AC susceptibility, DC magnetization and superconducting properties of tungsten oxide nanowires added YBa2Cu3Oy. Ceramics International, 2019, 45, 21864-21869.	4.8	13
185	Structural, optical and magnetic properties of Tb3+ substituted Co nanoferrites prepared via sonochemical approach. Ceramics International, 2019, 45, 22538-22546.	4.8	45
186	Magnetic Attributes of NiFe2O4 Nanoparticles: Influence of Dysprosium Ions (Dy3+) Substitution. Nanomaterials, 2019, 9, 820.	4.1	95
187	Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicology and Environmental Safety, 2019, 186, 109751.	6.0	30
188	Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties. Ultrasonics Sonochemistry, 2019, 59, 104757.	8.2	89
189	Electrical properties of La3+ and Y3+ ions substituted Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites. Results in Physics, 2019, 15, 102755.	4.1	29
190	Impact of Dy2O3 nanoparticles additions on the properties of porous YBCO ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 17572-17582.	2.2	29
191	Flux pinning properties of YBCO added by WO3 nanoparticles. Journal of Alloys and Compounds, 2019, 810, 151884.	5.5	27
192	Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution. Journal of Rare Earths, 2019, 37, 732-740.	4.8	72
193	Enhanced magnetic property and antibacterial biomedical activity of Ce3+ doped CuFe2O4 spinel nanoparticles synthesized by sol-gel method. Journal of Magnetism and Magnetic Materials, 2019, 478, 140-147.	2.3	124
194	Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. Journal of Molecular Structure, 2019, 1195, 269-279.	3.6	40
195	Electrical and dielectric properties of Nb3+ ions substituted Ba-hexaferrites. Results in Physics, 2019, 14, 102468.	4.1	27
196	Study of tungsten oxide effect on the performance of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 13509-13518.	2.2	82
197	Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2â^'xO4 nano-spinel ferrites. Ultrasonics Sonochemistry, 2019, 58, 104654.	8.2	99
198	Sonochemical Synthesis of CoFe2-xNdxO4 Nanoparticles: Structural, Optical, and Magnetic Investigation. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3837-3844.	1.8	25

#	Article	IF	CITATIONS
199	Excess conductivity and AC susceptibility studies of Y-123 superconductor added with TiO2 nano-wires. Materials Chemistry and Physics, 2019, 235, 121721.	4.0	37
200	Exploration of catalytic and cytotoxicity activities of CaxMgxNi1-2xFe2O4 nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2019, 196, 111506.	3.8	20
201	Sonochemical synthesis of Eu3+ substituted CoFe2O4 nanoparticles and their structural, optical and magnetic properties. Ultrasonics Sonochemistry, 2019, 58, 104621.	8.2	77
202	Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2â^xO4 (0.0â€â‰ ≇ €xâ€`â‰ ≇ € 0.04) spinel ferrites synthesized by ultrasonic irradiation. Ultrasonics Sonochemistry, 20 104638.)1 9, 258,	64
203	Effect of Nb3+ ion substitution on the magnetic properties of SrFe12O19 hexaferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 11181-11192.	2.2	36
204	Ce–Nd Co-substituted nanospinel cobalt ferrites: An investigation of their structural, magnetic, optical, and apoptotic properties. Ceramics International, 2019, 45, 16147-16156.	4.8	90
205	Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2â^'xO4 (0.0â€`â‰â€`xâ€`â‰â€`0.10) spinel ferrites synthesized by ultrasound irradiatio Ultrasonics Sonochemistry, 2019, 57, 203-211.	on8.2	81
206	Structural, magnetic and electrochemical characterizations of Bi2Mo2O9 nanoparticle for supercapacitor application. Journal of Magnetism and Magnetic Materials, 2019, 486, 165254.	2.3	88
207	Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L.). Chemosphere, 2019, 226, 110-122.	8.2	117
208	Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceramics International, 2019, 45, 11989-12000.	4.8	81
209	Magnetic and pH-responsive magnetic nanocarriers. , 2019, , 37-85.		20
210	Effect of Nb3+ Substitution on the Structural, Magnetic, and Optical Properties of Co0.5Ni0.5Fe2O4 Nanoparticles. Nanomaterials, 2019, 9, 430.	4.1	86
211	Magneto-resistivity and magnetization investigations of YBCO superconductor added by nano-wires and nano-particles of titanium oxide. Journal of Materials Science: Materials in Electronics, 2019, 30, 8805-8813.	2.2	34
212	Structure, Mössbauer and AC susceptibility of strontium nanohexaferrites: Effect of vanadium ions doping. Ceramics International, 2019, 45, 11615-11624.	4.8	15
213	Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results in Physics, 2019, 13, 102166.	4.1	52
214	Impact of superparamagnetic iron oxide nanoparticles (SPIONs) and ionic iron on physiology of summer squash (Cucurbita pepo): A comparative study. Plant Physiology and Biochemistry, 2019, 139, 56-65.	5.8	40
215	Tracking of SPIONs in Barley (Hordeum vulgare L.) Plant Organs During its Growth. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3285-3294.	1.8	8
216	Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites. Journal of Materials Science: Materials in Electronics, 2019, 30, 9143-9154.	2.2	58

#	Article	IF	CITATIONS
217	The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties. Results in Physics, 2019, 13, 102244.	4.1	44
218	Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 9520-9530.	2.2	97
219	Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. Environmental Nanotechnology, Monitoring and Management, 2019, 11, 100223.	2.9	24
220	Correlation Between Composition and Electrodynamics Properties in Nanocomposites Based on Hard/Soft Ferrimagnetics with Strong Exchange Coupling. Nanomaterials, 2019, 9, 202.	4.1	213
221	Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles. Journal of Rare Earths, 2019, 37, 871-878.	4.8	93
222	Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. Ultrasonics Sonochemistry, 2019, 54, 1-10.	8.2	108
223	Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. Journal of Alloys and Compounds, 2019, 788, 1193-1202.	5.5	105
224	AC susceptibility and hyperfine interactions of Mg-Ca ions co-substituted BaFe12O19 nanohexaferrites. Ceramics International, 2019, 45, 10048-10055.	4.8	25
225	Fabrication of Spinel Cobalt Ferrite (CoFe ₂ O ₄) Nanoparticles with Unique Earth Element Cerium and Neodymium for Anticandidal Activities. ChemistrySelect, 2019, 4, 14329-14334.	1.5	13
226	Synthesis of Mn0.5Zn0.5SmxEuxFe1.8â^'2xO4 Nanoparticles via the Hydrothermal Approach Induced Anti-Cancer and Anti-Bacterial Activities. Nanomaterials, 2019, 9, 1635.	4.1	56
227	Impact of La ³⁺ and Y ³⁺ ion substitutions on structural, magnetic and microwave properties of Ni _{0.3} Cu _{0.3} Zn _{0.4} Fe ₂ O ₄ nanospinel ferrites synthesized <i>via</i> sonochemical route. RSC Advances, 2019, 9, 30671-30684.	3.6	90
228	Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite. Journal of Magnetism and Magnetic Materials, 2019, 471, 124-132.	2.3	80
229	Investigation of Microstructural and Magnetic Properties of BaVxFe12â^'xO19 Nanohexaferrites. Journal of Superconductivity and Novel Magnetism, 2019, 32, 1437-1445.	1.8	15
230	Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceramics International, 2019, 45, 6828-6835.	4.8	71
231	Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceramics International, 2019, 45, 6021-6029.	4.8	88
232	Manganese/Yttrium Codoped Strontium Nanohexaferrites: Evaluation of Magnetic Susceptibility and Mossbauer Spectra. Nanomaterials, 2019, 9, 24.	4.1	77
233	Magneto-optical properties of rare earth metals substituted Co-Zn spinel nanoferrites. Ceramics International, 2019, 45, 3449-3458.	4.8	111
234	Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceramics International, 2019, 45, 8222-8232.	4.8	98

#	Article	IF	CITATIONS
235	Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceramics International, 2019, 45, 2621-2628.	4.8	89
236	The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceramics International, 2019, 45, 1691-1697.	4.8	84
237	Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. Journal of Alloys and Compounds, 2019, 781, 664-673.	5.5	69
238	Nd3+ Ion-Substituted Co1â^'2xNixMnxFe2â^'yNdyO4 Nanoparticles: Structural, Morphological, and Magnetic Investigations. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 783-791.	3.7	29
239	Impact of Nd-Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceramics International, 2019, 45, 963-969.	4.8	78
240	AC susceptibility study of Cu substituted BaFe12O19 nanohexaferrites. Ceramics International, 2018, 44, 13097-13105.	4.8	34
241	AC susceptibility and Mossbauer study of Ce 3+ ion substituted SrFe 12 O 19 nanohexaferrites. Ceramics International, 2018, 44, 10470-10477.	4.8	56
242	Ce-Y co-substituted strontium nanohexaferrites: AC susceptibility and Mossbauer studies. Ceramics International, 2018, 44, 12520-12527.	4.8	17
243	Structural and magnetic properties of Ce-Y substituted strontium nanohexaferrites. Ceramics International, 2018, 44, 12511-12519.	4.8	88
244	Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceramics International, 2018, 44, 9000-9008.	4.8	151
245	Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7â^δ compounds: intragranular and intergranular superconducting properties. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	29
246	Excess Conductivity Investigation of Y3Ba5Cu8O18±δ Superconductors Prepared by Various Parameters of Planetary Ball Milling Technique. Journal of Superconductivity and Novel Magnetism, 2018, 31, 2339-2348.	1.8	25
247	Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceramics International, 2018, 44, 14242-14250.	4.8	138
248	Impact of planetary ball milling parameters on the microstructure and pinning properties of polycrystalline superconductor Y3Ba5Cu8Oy. Cryogenics, 2018, 92, 5-12.	1.7	36
249	Effect of Cr 3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 204-212.	2.3	88
250	Comparison of the Microstructure and Flux Pinning Properties of Polycrystalline YBa2Cu3O7-d Containing Zn0.95Mn0.05O or Al2O3 Nanoparticles. Journal of Low Temperature Physics, 2018, 192, 100-116.	1.4	22
251	Investigation of Structural and Magnetic Properties on Mg1â^'xZnxFe2â^'xAlxO4 (0.0 â‰≇€‰x â‰≇€% Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 942-953.	• <u>9.8</u>)	18
252	Bi-based superconductors prepared with addition of CoFe2O4 for the design of a magnetic probe. Cryogenics, 2018, 89, 53-57.	1.7	24

#	Article	IF	CITATIONS
253	Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. Journal of Sol-Gel Science and Technology, 2018, 88, 628-638.	2.4	48
254	Impact of manganese ferrite (MnFe2O4) nanoparticles on growth and magnetic character of barley (Hordeum vulgare L.). Environmental Pollution, 2018, 243, 872-881.	7.5	76
255	Exchange spring magnetic behavior of Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe2O4)x nanocomposites fabricated by a one-pot citrate sol-gel combustion method. Journal of Alloys and Compounds, 2018, 762, 389-397.	5.5	90
256	AC susceptibility and hyperfine interactions of vanadium substituted barium nanohexaferrites. Ceramics International, 2018, 44, 17749-17758.	4.8	34
257	Comparative investigation of the ball milling role against hand grinding on microstructure, transport and pinning properties of Y3Ba5Cu8O18À±l̃ and YBa2Cu3O7-l̂. Ceramics International, 2018, 44, 19950-19957.	4.8	37
258	Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode. Ceramics International, 2018, 44, 20075-20083.	4.8	95
259	Higher intra-granular and inter-granular performances of YBCO superconductor with TiO2 nano-sized particles addition. Ceramics International, 2018, 44, 18836-18843.	4.8	78
260	Structural, morphological and magnetic properties of hard/soft SrFe12-xVxO19/(Ni0.5Mn0.5Fe2O4)y nanocomposites: Effect of vanadium substitution. Journal of Alloys and Compounds, 2018, 767, 966-975.	5.5	80
261	Substitution effect of Cr3+ on hyperfine interactions, magnetic and optical properties of Sr-hexaferrites. Ceramics International, 2018, 44, 15995-16004.	4.8	77
262	Fluctuation induced conductivity studies in YBa2Cu3Oy compound embedded by superconducting nano-particles Y-deficient YBa2Cu3Oy: effect of silver inclusion. Indian Journal of Physics, 2016, 90, 1009-1018.	1.8	27
263	Fluctuation induced magneto-conductivity of Y3Ba5Cu8O18±x and YBa2Cu3O7â~'d. Modern Physics Letters B, 2015, 29, 1550227.	1.9	12
264	Excess Conductivity Study in Nano-CoFe2O4-Added YBa2Cu3O7â^'d and Y3Ba5Cu8O18±x Superconductors. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3001-3010.	1.8	73
265	Magneto-conductivity fluctuation in YBCO prepared by sintering of ball-milled precursor powder. Materials Chemistry and Physics, 2015, 159, 185-193.	4.0	33
266	Energy Dissipation Mechanisms in Polycrystalline Superconductor Y3Ba5Cu8O y. Journal of Superconductivity and Novel Magnetism, 2015, 28, 487-492.	1.8	12
267	Effect of the Ball-Milling Technique on the Transport Current Density of Polycrystalline Superconductor YBa 2 Cu 3 O y -Pinning Mechanism. Journal of Superconductivity and Novel Magnetism, 2015, 28, 493-498.	1.8	16
268	The study on SiO2 nanoparticles and nanowires added YBCuO: Microstructure and normal state electrical properties. Physica C: Superconductivity and Its Applications, 2014, 498, 38-44.	1.2	26
269	SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceramics International, 2014, 40, 4953-4962.	4.8	86
270	Superconducting properties of polycrystalline YBa2Cu3O7 – d prepared by sintering of ball-milled precursor powder. Ceramics International, 2014, 40, 1461-1470.	4.8	72

#	Article	IF	CITATIONS
271	Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358. Physica B: Condensed Matter, 2014, 450, 7-15.	2.7	38
272	Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder. Physica B: Condensed Matter, 2013, 430, 52-57.	2.7	27
273	The normal state properties of nano-sized CoFe[sub 2]O[sub 4] added Bi-based superconductors in bipolaron model. AIP Conference Proceedings, 2013, , .	0.4	4
274	Effect of nanowires SiO[sub 2] on superconducting properties of YBa[sub 2]Cu[sub 3]O[sub 7â^'d] bulks. , 2013, , .		4
275	Effect of Er3+ and Y3+ ions co-substitution on conductivity and dielectric features of Mn-Zn nanosized spinel ferrites. Journal of Materials Science: Materials in Electronics, 0, , 1.	2.2	Ο