Grigory Konstantinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3630553/publications.pdf

Version: 2024-02-01

1478505 1199594 14 136 12 6 citations g-index h-index papers 14 14 14 91 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Rapid Conversion of Methane to Hydrogen Stimulated by Microwave Irradiation on the Surface of a Carbon Adsorbent. Doklady Physical Chemistry, 2021, 498, 49-53.	0.9	5
2	Microwave-Assisted Plasma Catalytic Conversion of Tar to Hydrocarbon Products. Petroleum Chemistry, 2021, 61, 721-728.	1.4	4
3	Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. Russian Journal of Applied Chemistry, 2021, 94, 1513-1524.	0.5	5
4	Using Porous Ceramic Catalytic Converters for Dehydrogenation of Propane in Propylene. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 76, 428-431.	0.6	2
5	Microwave-Assisted Lignin Conversion for Energy Carriers. Russian Journal of Physical Chemistry B, 2019, 13, 421-426.	1.3	1
6	Kraft Lignin Conversion into Energy Carriers under the Action of Electromagnetic Radiation. Journal of Chemistry, 2019, 2019, 1-9.	1.9	7
7	Preparation of Purified Hydrogen by Selective Hydrogenation of Carbon Monoxide in a Mixture of Steam Reforming Products of Organic Substrates Using a Membrane Catalytic Reactor. Petroleum Chemistry, 2018, 58, 1019-1022.	1.4	O
8	Hydrogen Sulfide-Resistant Bifunctional Catalysts for the Steam Reforming of Methane: Activity and Structural Evolution. Catalysis in Industry, 2018, 10, 1-8.	0.7	7
9	The role of nanosized nickel particles in microwave-assisted dry reforming of lignin. Chemical Engineering Journal, 2017, 309, 628-637.	12.7	37
10	Utilization of petroleum residues under microwave irradiation. Chemical Engineering Journal, 2016, 292, 315-320.	12.7	26
11	Core-shell bifunctional catalyst for steam methane reforming resistant to H2S: Activity and structure evolution. International Journal of Hydrogen Energy, 2015, 40, 2963-2970.	7.1	25
12	Catalyst for methane vapor reforming fabricated on the basis of natural oxides and stable in H2S medium: Activity, selectivity, and nanostructure evolution. Nanotechnologies in Russia, 2012, 7, 463-470.	0.7	2
13	Degradation of organophosphorus compounds adsorbed in carbon sorbent pores. Solid Fuel Chemistry, 2012, 46, 37-44.	0.7	6
14	High-speed degradation of sorbed petroleum residues and pollutants. Solid Fuel Chemistry, 2012, 46, 121-127.	0.7	9