
Hannes Feilhauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363039/publications.pdf Version: 2024-02-01

HANNES FEILHALLED

#	Article	IF	CITATIONS
1	Sampling Robustness in Gradient Analysis of Urban Material Mixtures. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	0
2	Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma, 2022, 406, 115512.	5.1	9
3	Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sensing of Environment, 2022, 277, 112888.	11.0	21
4	Transfer learning from citizen science photographs enables plant species identification in UAV imagery. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 5, 100016.	3.1	2
5	Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 5, 100018.	3.1	19
6	Spectrally defined plant functional types adequately capture multidimensional trait variation in herbaceous communities. Ecological Indicators, 2021, 120, 106970.	6.3	6
7	Let your maps be fuzzy!—Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation. Remote Sensing in Ecology and Conservation, 2021, 7, 292-305.	4.3	20
8	Using floristic gradient mapping to assess seasonal thaw depth in interior Alaska. Applied Vegetation Science, 2021, 24, e12561.	1.9	3
9	Which optical traits enable an estimation of tree species diversity based on the Spectral Variation Hypothesis?. Applied Vegetation Science, 2021, 24, e12586.	1.9	20
10	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	7.8	101
11	Are urban material gradients transferable between areas?. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102332.	2.8	2
12	Evaluating different methods for retrieving intraspecific leaf trait variation from hyperspectral leaf reflectance. Ecological Indicators, 2021, 130, 108111.	6.3	8
13	Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sensing of Environment, 2021, 266, 112692.	11.0	15
14	Assessing the impact of an invasive bryophyte on plant species richness using high resolution imaging spectroscopy. Ecological Indicators, 2020, 110, 105882.	6.3	7
15	Hierarchical classification with subsequent aggregation of heathland habitats using an intra-annual RapidEye time-series. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102036.	2.8	9
16	Mapping of arthropod alpha and beta diversity in heterogeneous arctic-alpine ecosystems. Ecological Informatics, 2019, 54, 101007.	5.2	3
17	Broad-scale rather than fine-scale environmental variation drives body size in a wandering predator (Araneae, Lycosidae). Arctic, Antarctic, and Alpine Research, 2019, 51, 315-326.	1.1	6
18	Remote sensing of coastal vegetation: Dealing with high species turnover by mapping multiple floristic gradients. Applied Vegetation Science, 2019, 22, 534-546.	1.9	3

HANNES FEILHAUER

#	Article	IF	CITATIONS
19	Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sensing, 2019, 11, 1298.	4.0	32
20	Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data. Remote Sensing of Environment, 2019, 223, 179-193.	11.0	12
21	Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation. Ecological Indicators, 2018, 88, 232-240.	6.3	30
22	Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biological Invasions, 2018, 20, 2257-2271.	2.4	9
23	LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote Sensing of Environment, 2018, 211, 13-25.	11.0	19
24	Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 61-72.	2.8	17
25	Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus. Mountain Research and Development, 2018, 38, 63-72.	1.0	7
26	Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae:) Tj ETQq0 0 0	rgBT /Over 1:2	rlock 10 Tf 50
27	Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecological Indicators, 2018, 85, 983-990.	6.3	35
28	Measuring βâ€diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 2018, 9, 1787-1798.	5.2	97
29	A unified framework to model the potential and realized distributions of invasive species within the invaded range. Diversity and Distributions, 2017, 23, 806-819.	4.1	58
30	Modelling biomass of mountainous grasslands by including a species composition map. Ecological Indicators, 2017, 78, 8-18.	6.3	33
31	Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy, 2017, 76, 40-49.	4.9	45
32	Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions, 2017, 19, 239-254.	2.4	59
33	Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecological Informatics, 2017, 37, 66-76.	5.2	36
34	Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability. Ecological Indicators, 2017, 73, 825-833.	6.3	35
35	Invasion by the Alien Tree Prunus serotina Alters Ecosystem Functions in a Temperate Deciduous Forest. Frontiers in Plant Science, 2017, 8, 179.	3.6	67

36Separating reflectance signatures of shrub species â€" a case study in the <scp>C</scp>entral
<scp>G</scp>reater <scp>C</scp>aucasus. Applied Vegetation Science, 2016, 19, 304-315.1.99

HANNES FEILHAUER

#	Article	IF	CITATIONS
37	Estimating Vegetation Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the Georgian Caucasus. Mountain Research and Development, 2016, 36, 56-65.	1.0	53
38	Mapping raised bogs with an iterative one-class classification approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120, 53-64.	11.1	38
39	Mapping pollination types with remote sensing. Journal of Vegetation Science, 2016, 27, 999-1011.	2.2	21
40	Elevational Variation of Reproductive Traits in Five <i>Pardosa</i> (Lycosidae) Species. Arctic, Antarctic, and Alpine Research, 2015, 47, 473-479.	1.1	13
41	Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment, 2015, 164, 57-65.	11.0	147
42	Remote sensing of scattered Natura 2000 habitats using a one-class classifier. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 211-217.	2.8	52
43	Remote Sensing of Vegetation for Nature Conservation. Remote Sensing and Digital Image Processing, 2014, , 203-215.	0.7	0
44	Mapping the local variability of Natura 2000 habitats with remote sensing. Applied Vegetation Science, 2014, 17, 765-779.	1.9	56
45	Discrimination and characterization of management systems in semi-arid rangelands of South Africa using RapidEye time series. International Journal of Remote Sensing, 2014, 35, 1653-1673.	2.9	11
46	Snow cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde, 2014, , 157-172.	0.8	12
47	Uncertainty in ecosystem mapping by remote sensing. Computers and Geosciences, 2013, 50, 128-135.	4.2	105
48	Coupling ordination techniques and <scp>GAM</scp> to spatially predict vegetation assemblages along a climatic gradient in an <scp>ENSO</scp> â€affected region of extremely high climate variability. Journal of Vegetation Science, 2013, 24, 1154-1166.	2.2	21
49	Relating canopy reflectance to the vegetation composition of mountainous grasslands in the Greater Caucasus. Agriculture, Ecosystems and Environment, 2013, 177, 101-112.	5.3	10
50	Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics, 2013, 17, 82-93.	5.2	65
51	Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 218-229.	2.8	70
52	Differences between recent and historical records of upper species limits in the northern European Alps. Erdkunde, 2013, 67, 345-354.	0.8	1
53	Mapping plant strategy types and derivatives with imaging spectroscopy. , 2012, , .		0
54	Important characteristics of multispectral data for an assessment of floristic variation. , 2012, , .		0

HANNES FEILHAUER

#	Article	IF	CITATIONS
55	Modeling Species Distribution Using Niche-Based Proxies Derived from Composite Bioclimatic Variables and MODIS NDVI. Remote Sensing, 2012, 4, 2057-2075.	4.0	46
56	Mapping plant strategy types using remote sensing. Journal of Vegetation Science, 2012, 23, 395-405.	2.2	123
57	On variable relations between vegetation patterns and canopy reflectance. Ecological Informatics, 2011, 6, 83-92.	5.2	63
58	Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sensing of Environment, 2011, 115, 2513-2524.	11.0	72
59	Quantifying empirical relations between planted species mixtures and canopy reflectance with PROTEST. Remote Sensing of Environment, 2010, 114, 1513-1521.	11.0	19
60	Brightness-normalized Partial Least Squares Regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1947-1957.	2.3	124
61	A bruteâ€force approach to vegetation classification. Journal of Vegetation Science, 2010, 21, 1162-1171.	2.2	66
62	Estimating the impact of forest use on biodiversity in protected areas of developing tropical regions. Erdkunde, 2010, 64, 47-56.	0.8	5
63	Mapping continuous fields of forest alpha and beta diversity. Applied Vegetation Science, 2009, 12, 429-439.	1.9	69
64	Soil heterogeneity at the field scale: a challenge for precision crop protection. Precision Agriculture, 2008, 9, 367-390.	6.0	75