
Hannes Feilhauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/363039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sensing of Environment, 2015, 164, 57-65.	11.0	147
2	Brightness-normalized Partial Least Squares Regression for hyperspectral data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1947-1957.	2.3	124
3	Mapping plant strategy types using remote sensing. Journal of Vegetation Science, 2012, 23, 395-405.	2.2	123
4	Uncertainty in ecosystem mapping by remote sensing. Computers and Geosciences, 2013, 50, 128-135.	4.2	105
5	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	7.8	101
6	Measuring βâ€diversity by remote sensing: A challenge for biodiversity monitoring. Methods in Ecology and Evolution, 2018, 9, 1787-1798.	5.2	97
7	Soil heterogeneity at the field scale: a challenge for precision crop protection. Precision Agriculture, 2008, 9, 367-390.	6.0	75
8	Combining Isomap ordination and imaging spectroscopy to map continuous floristic gradients in a heterogeneous landscape. Remote Sensing of Environment, 2011, 115, 2513-2524.	11.0	72
9	Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 218-229.	2.8	70
10	Mapping continuous fields of forest alpha and beta diversity. Applied Vegetation Science, 2009, 12, 429-439.	1.9	69
11	Invasion by the Alien Tree Prunus serotina Alters Ecosystem Functions in a Temperate Deciduous Forest. Frontiers in Plant Science, 2017, 8, 179.	3.6	67
12	A bruteâ€force approach to vegetation classification. Journal of Vegetation Science, 2010, 21, 1162-1171.	2.2	66
13	Calculating landscape diversity with information-theory based indices: A GRASS GIS solution. Ecological Informatics, 2013, 17, 82-93.	5.2	65
14	On variable relations between vegetation patterns and canopy reflectance. Ecological Informatics, 2011, 6, 83-92.	5.2	63
15	Mapping an invasive bryophyte species using hyperspectral remote sensing data. Biological Invasions, 2017, 19, 239-254.	2.4	59
16	A unified framework to model the potential and realized distributions of invasive species within the invaded range. Diversity and Distributions, 2017, 23, 806-819.	4.1	58
17	Mapping the local variability of Natura 2000 habitats with remote sensing. Applied Vegetation Science, 2014, 17, 765-779.	1.9	56
18	Estimating Vegetation Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the Georgian Caucasus. Mountain Research and Development, 2016, 36, 56-65.	1.0	53

HANNES FEILHAUER

#	Article	IF	CITATIONS
19	Remote sensing of scattered Natura 2000 habitats using a one-class classifier. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 211-217.	2.8	52
20	Modeling Species Distribution Using Niche-Based Proxies Derived from Composite Bioclimatic Variables and MODIS NDVI. Remote Sensing, 2012, 4, 2057-2075.	4.0	46
21	Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy, 2017, 76, 40-49.	4.9	45
22	Mapping raised bogs with an iterative one-class classification approach. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 120, 53-64.	11.1	38
23	Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecological Informatics, 2017, 37, 66-76.	5.2	36
24	Optical trait indicators for remote sensing of plant species composition: Predictive power and seasonal variability. Ecological Indicators, 2017, 73, 825-833.	6.3	35
25	Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and functional diversity study. Ecological Indicators, 2018, 85, 983-990.	6.3	35
26	Modelling biomass of mountainous grasslands by including a species composition map. Ecological Indicators, 2017, 78, 8-18.	6.3	33
27	Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sensing, 2019, 11, 1298.	4.0	32
28	Are remotely sensed traits suitable for ecological analysis? A case study of long-term drought effects on leaf mass per area of wetland vegetation. Ecological Indicators, 2018, 88, 232-240.	6.3	30
29	Coupling ordination techniques and <scp>GAM</scp> to spatially predict vegetation assemblages along a climatic gradient in an <scp>ENSO</scp> â€affected region of extremely high climate variability. Journal of Vegetation Science, 2013, 24, 1154-1166.	2.2	21
30	Mapping pollination types with remote sensing. Journal of Vegetation Science, 2016, 27, 999-1011.	2.2	21
31	Mapping land-use intensity of grasslands in Germany with machine learning and Sentinel-2 time series. Remote Sensing of Environment, 2022, 277, 112888.	11.0	21
32	Let your maps be fuzzy!—Class probabilities and floristic gradients as alternatives to crisp mapping for remote sensing of vegetation. Remote Sensing in Ecology and Conservation, 2021, 7, 292-305.	4.3	20
33	Which optical traits enable an estimation of tree species diversity based on the Spectral Variation Hypothesis?. Applied Vegetation Science, 2021, 24, e12586.	1.9	20
34	Quantifying empirical relations between planted species mixtures and canopy reflectance with PROTEST. Remote Sensing of Environment, 2010, 114, 1513-1521.	11.0	19
35	LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy. Remote Sensing of Environment, 2018, 211, 13-25.	11.0	19
36	Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 5, 100018.	3.1	19

HANNES FEILHAUER

#	Article	IF	CITATIONS
37	Egg size versus egg number trade-off in the alpine-tundra wolf spider, Pardosa palustris (Araneae:) Tj ETQq1 1 0	.784314 r 1.2	gBT_/Overloci
38	Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 61-72.	2.8	17
39	Solar photovoltaic module detection using laboratory and airborne imaging spectroscopy data. Remote Sensing of Environment, 2021, 266, 112692.	11.0	15
40	Elevational Variation of Reproductive Traits in Five <i>Pardosa</i> (Lycosidae) Species. Arctic, Antarctic, and Alpine Research, 2015, 47, 473-479.	1.1	13
41	Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data. Remote Sensing of Environment, 2019, 223, 179-193.	11.0	12
42	Snow cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde, 2014, , 157-172.	0.8	12
43	Discrimination and characterization of management systems in semi-arid rangelands of South Africa using RapidEye time series. International Journal of Remote Sensing, 2014, 35, 1653-1673.	2.9	11
44	Relating canopy reflectance to the vegetation composition of mountainous grasslands in the Greater Caucasus. Agriculture, Ecosystems and Environment, 2013, 177, 101-112.	5.3	10
45	Separating reflectance signatures of shrub species – a case study in the <scp>C</scp> entral <scp>G</scp> reater <scp>C</scp> aucasus. Applied Vegetation Science, 2016, 19, 304-315.	1.9	9
46	Analyzing remotely sensed structural and chemical canopy traits of a forest invaded by Prunus serotina over multiple spatial scales. Biological Invasions, 2018, 20, 2257-2271.	2.4	9
47	Hierarchical classification with subsequent aggregation of heathland habitats using an intra-annual RapidEye time-series. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102036.	2.8	9
48	Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma, 2022, 406, 115512.	5.1	9
49	Evaluating different methods for retrieving intraspecific leaf trait variation from hyperspectral leaf reflectance. Ecological Indicators, 2021, 130, 108111.	6.3	8
50	Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus. Mountain Research and Development, 2018, 38, 63-72.	1.0	7
51	Assessing the impact of an invasive bryophyte on plant species richness using high resolution imaging spectroscopy. Ecological Indicators, 2020, 110, 105882.	6.3	7
52	Broad-scale rather than fine-scale environmental variation drives body size in a wandering predator (Araneae, Lycosidae). Arctic, Antarctic, and Alpine Research, 2019, 51, 315-326.	1.1	6
53	Spectrally defined plant functional types adequately capture multidimensional trait variation in herbaceous communities. Ecological Indicators, 2021, 120, 106970.	6.3	6
54	Estimating the impact of forest use on biodiversity in protected areas of developing tropical regions. Erdkunde, 2010, 64, 47-56.	0.8	5

HANNES FEILHAUER

#	Article	IF	CITATIONS
55	Mapping of arthropod alpha and beta diversity in heterogeneous arctic-alpine ecosystems. Ecological Informatics, 2019, 54, 101007.	5.2	3
56	Remote sensing of coastal vegetation: Dealing with high species turnover by mapping multiple floristic gradients. Applied Vegetation Science, 2019, 22, 534-546.	1.9	3
57	Using floristic gradient mapping to assess seasonal thaw depth in interior Alaska. Applied Vegetation Science, 2021, 24, e12561.	1.9	3
58	Are urban material gradients transferable between areas?. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102332.	2.8	2
59	Transfer learning from citizen science photographs enables plant species identification in UAV imagery. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2022, 5, 100016.	3.1	2
60	Differences between recent and historical records of upper species limits in the northern European Alps. Erdkunde, 2013, 67, 345-354.	0.8	1
61	Mapping plant strategy types and derivatives with imaging spectroscopy. , 2012, , .		0
62	Important characteristics of multispectral data for an assessment of floristic variation. , 2012, , .		0
63	Remote Sensing of Vegetation for Nature Conservation. Remote Sensing and Digital Image Processing, 2014, , 203-215.	0.7	0
64	Sampling Robustness in Gradient Analysis of Urban Material Mixtures. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	0