Juan FernÃ ${ }_{j}{ }^{n d e z}-S \tilde{A ̃}_{j} n c h e z$

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3630004/publications.pdf
Version: 2024-02-01

1 Best-possible bounds on the set of copulas with a given value of Spearman's footrule. Fuzzy Sets and Systems, 2022, 428, 138-152.

On the measure induced by copulas that are invariant under univariate truncation. Fuzzy Sets and
Systems, 2022, , .
On the measure induced by copulas that are invariant under univariate truncation. Fuzzy Sets and
Systems, 2022, , .
$2.7 \quad 0$
-
3 A generalization of a copula-based construction of fuzzy implications. Fuzzy Sets and Systems, 2022, ,. $2.7 \quad 2$

4 A study of topological conjugacies between alternate representation systems. Revista De La Real
1.20

Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2022, 116, .

Extensions of Discrete Copulas to Sparse Copulas. IEEE Transactions on Fuzzy Systems, 2021, 29,
3546-3551.
$9.8 \quad 5$

6 Connecting copula properties with reliability properties of coherent systems. Applied Stochastic
1.5

Models in Business and Industry, 2021, 37, 496-512.
$7 \quad$ New results on discrete copulas and quasi-copulas. Fuzzy Sets and Systems, 2021, 415, 89-98.
$2.7 \quad 7$

8 Some properties of double shuffles of bivariate copulas and (extreme) copulas invariant with respect to LÃ1/4roth double shuffles. Fuzzy Sets and Systems, 2021, 428, 102-102.
2.7

3

9 Construction of Copulas with Hairpin Support. Mediterranean Journal of Mathematics, 2021, $18,1$.

$$
\begin{aligned}
& 13 \text { A note on an idempotent transformation of absolutely continuous Archimedean copulas. Fuzzy Sets } \\
& \text { and Systems, 2020, 393, 160-166. }
\end{aligned}
$$

```
21.Solution to two open problems on perturbations of the product copula. Fuzzy Sets and Systems, 2019,
354, 116-122.
```

22 Zero-linear copulas. Information Sciences, 2019, 503, 23-38.
$6.9 \quad 3$

23 Extreme biconic copulas: Characterization, properties and extensions to aggregation functions.
$\begin{array}{ll}6.9 & 7\end{array}$

Proving Sklarâ $€^{T M}$ S Theorem Via Zornâ $€^{T M}$ S Lemma. International Journal of Uncertainty, Fuzziness and
1.9

Knowlege-Based Systems, 2018, 26, 81-85.

25 Maximum asymmetry of copulas revisited. Dependence Modeling, 2018, 6, 47-62.
$27 \quad$ Constructions of copulas with given diagonal (and opposite diagonal) sections and some generalizations. Dependence Modeling, 2018, 6, 139-155.28 Extensions of subcopulas. Journal of Mathematical Analysis and Applications, 2017, 452, 1-15.1.012
29 A Salem generalised function. Acta Mathematica Hungarica, 2017, 151, 361-378.0.59
30 Copulas with given values on the tails. International Journal of Approximate Reasoning, 2017, 85, 59-67.3.3
31 A note on singularity of a recently introduced family of Minkowski's question-mark functions. 0.3
3 A note on singularity of a recently introduced family of
Comptes Rendus Mathematique, 2017, 355, 956-959.
32 Pisot numbers and strong negations. Chaos, Solitons and Fractals, 2017, 104, 61-67.
33 Copulas with given track and opposite track sections: Solution to a problem on diagonals. Fuzzy Sets and Systems, 2017, 308, 133-137. 2.7 5
\square

39	Some members of the class of (quasi-)copulas with given diagonal from the Markov kernel perspective. Communications in Statistics - Theory and Methods, 2016, 45, 1508-1526.	1.0	13
40	The distribution of the probability mass of biconic copulas. Information Sciences, 2016, 329, 177-183.	6.9	4
41	Characterization of copulas with given diagonal and opposite diagonal sections. Fuzzy Sets and Systems, 2016, 284, 63-77.	2.7	9
42	A singular function with a non-zero finite derivative on a dense set with Hausdorff dimension one. Journal of Mathematical Analysis and Applications, 2016, 434, 713-728.	1.0	4
43	Independence results for multivariate tail dependence coefficients. Fuzzy Sets and Systems, 2016, 284, 129-137.	2.7	7

47 On the singular components of a copula. Journal of Applied Probability, 2015, 52, 1175-1182.
51 Copulas, diagonals, and tail dependence. Fuzzy Sets and Systems, 2015, 264, 22-41. 35
Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform

1311-1336.

```
55 Copulae, Self-Affine Functions, and Fractal Dimensions. Mediterranean Journal of Mathematics, 2014,
55 11,1275-1287.
```

$0.8 \quad 1$

A Note on the Compatibility of Bivariate Copulas. Communications in Statistics - Theory and Methods, 2014, 43, 1918-1923.
$1.0 \quad 1$

57 Semi-polynomial copulas. Journal of Nonparametric Statistics, 2014, 26, 129-140.
$0.9 \quad 2$

58 A Characterization of the Orthogonal Grid Constructions of Copulas. IEEE Transactions on Fuzzy
$9.8 \quad 1$ Systems, 2014, 22, 1045-1047.

59 Multivariate copulas with hairpin support. Journal of Multivariate Analysis, 2014, 130, 323-334.
1.0

16

60 A note on quasi-copulas and signed measures. Fuzzy Sets and Systems, 2014, 234, 109-112.
$2.7 \quad 8$

61 Flipping of multivariate aggregation functions. Fuzzy Sets and Systems, 2014, 252, 66-75.
2.7

6

62 Copulas with continuous, strictly increasing singular conditional distribution functions. Journal of Mathematical Analysis and Applications, 2014, 410, 1014-1027.
1.0

```
63 PCF self-similar sets and fractal interpolation. Mathematics and Computers in Simulation, 2013, 92,
28-39.
```

$4.4 \quad 7$

64 On the existence of a trivariate copula with given values of a trivariate quasi-copula at several points.
Fuzzy Sets and Systems, 2013, 228, 3-14.
2.7

4
65 Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity.
Insurance: Mathematics and Economics, 2013, 53, 897-905.

Absolutely continuous copulas with given sub-diagonal section. Fuzzy Sets and Systems, 2013, 228, 105-113.
2.7

11

Harmonic analysis on the SierpiÅ,ski gasket and singular functions. Acta Mathematica Hungarica, 2013, 143, 58.
0.5

4

68 A note on the notion of singular copula. Fuzzy Sets and Systems, 2013, 211, 120-122.
2.7

19

69 A copula-based family of fuzzy implication operators. Fuzzy Sets and Systems, 2013, 211,55-61. 2.719

Some results on shuffles of two-dimensional copulas. Journal of Statistical Planning and Inference,
2013, 143, 251-260.

73 On the interrelation between Dempsterâ€"Shafer Belief Structures and their Belief Cumulative Distribution Functions. Knowledge-Based Systems, 2013, 52, 107-113.

74 A topological proof of Sklarâ $\epsilon{ }^{T M} \mathrm{~S}$ theorem. Applied Mathematics Letters, 2013, 26, 945-948.
2.7
2.7

21

76 How to Prove Sklarâ $\epsilon^{T \mathrm{M}}$ S Theorem. Advances in Intelligent Systems and Computing, 2013, , 85-90.
$0.6 \quad 4$

77 | Idempotent and multivariate copulas with fractal support. Journal of Statistical Planning and |
| :--- |
| Inference, 2012, 142, 3086-3096. |

On the approximation of copulas via shuffles of Min. Statistics and Probability Letters, 2012, 82, 1761-1767.

A singular function with a non-zero finite derivative. Nonlinear Analysis: Theory, Methods \&
Applications, 2012, 75, 5010-5014.

Singular Functions with Applications to Fractal Dimensions and Generalized Takagi Functions. Acta Applicandae Mathematicae, 2012, 119, 129-148.

Characterization of all copulas associated with non-continuous random variables. Fuzzy Sets and Systems, 2012, 191, 103-112.

Moments and associated measures of copulas with fractal support. Applied Mathematics and Computation, 2012, 218, 8634-8644.

6.9

20

84 Sklarâ ϵ^{TM} s theorem obtained via regularization techniques. Nonlinear Analysis: Theory, Methods \&
Applications, 2012, 75, 769-774.
1.1

29

> 85 Copulas and associated fractal sets. Journal of Mathematical Analysis and Applications, 2012, 386,
> $528-541$.

Measure-Preserving Functions and the Independence Copula. Mediterranean Journal of Mathematics, 2011, 8, 431-450.

Multivariate copulas, quasi-copulas and lattices. Statistics and Probability Letters, 2011, 81, 1365-1369.
0.7

22

