Akira Yoshimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629798/publications.pdf

Version: 2024-02-01

186265 3,620 78 28 citations h-index papers

58 g-index 109 109 109 2879 docs citations times ranked citing authors all docs

138484

#	Article	IF	Citations
1	Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chemical Reviews, 2016, 116, 3328-3435.	47.7	1,418
2	Hypervalent Iodine Catalyzed Generation of Nitrile Oxides from Oximes and their Cycloaddition with Alkenes or Alkynes. Organic Letters, 2013, 15, 4010-4013.	4.6	133
3	<i>oâ€</i> Alkoxyphenyliminoiodanes: Highly Efficient Reagents for the Catalytic Aziridination of Alkenes and the Metalâ€Free Amination of Organic Substrates. Chemistry - A European Journal, 2011, 17, 10538-10541.	3.3	86
4	Design, Preparation, X-ray Crystal Structure, and Reactivity of <i>o</i> -Alkoxyphenyliodonium Bis(methoxycarbonyl)methanide, a Highly Soluble Carbene Precursor. Organic Letters, 2012, 14, 3170-3173.	4.6	83
5	Synthetic applications of pseudocyclic hypervalent iodine compounds. Organic and Biomolecular Chemistry, 2016, 14, 4771-4781.	2.8	77
6	(Tosylimino)phenyl-î» ³ -iodane as a Reagent for the Synthesis of Methyl Carbamates via Hofmann Rearrangement of Aromatic and Aliphatic Carboxamides. Journal of Organic Chemistry, 2012, 77, 2087-2091.	3.2	69
7	Hypoioditeâ€Mediated Metalâ€Free Catalytic Aziridination of Alkenes. Angewandte Chemie - International Edition, 2012, 51, 8059-8062.	13.8	66
8	Iodine(III)-Catalyzed Formal $[2+2+1]$ Cycloaddition Reaction for Metal-Free Construction of Oxazoles. Organic Letters, 2017, 19, 2506-2509.	4.6	61
9	Hypoiodite mediated synthesis of isoxazolines from aldoximes and alkenes using catalytic KI and Oxone as the terminal oxidant. Chemical Communications, 2013, 49, 4800.	4.1	60
10	Hypervalent Iodine Catalyzed Hofmann Rearrangement of Carboxamides Using Oxone as Terminal Oxidant. Journal of Organic Chemistry, 2012, 77, 11399-11404.	3.2	59
11	Preparation, structure, and versatile reactivity of pseudocyclic benziodoxole triflate, new hypervalent iodine reagent. Chemical Communications, 2015, 51, 7835-7838.	4.1	59
12	Tetra- <i>n</i> -butylammonium Iodide Catalyzed Câ€"H Azidation of Aldehydes with Thermally Stable Azidobenziodoxolone. Organic Letters, 2015, 17, 5212-5215.	4.6	58
13	lodonium Salts as Benzyne Precursors. Chemistry - A European Journal, 2018, 24, 15156-15166.	3.3	54
14	Iodonium ylides in organic synthesis. Arkivoc, 2017, 2016, 342-374.	0.5	53
15	Hypervalent λ ³ -Bromane Strategy for Baeyer⠑Villiger Oxidation: Selective Transformation of Primary Aliphatic and Aromatic Aldehydes to Formates, Which is Missing in the Classical Baeyer⠑Villiger Oxidation. Journal of the American Chemical Society, 2010, 132, 9236-9239.	13.7	51
16	New highly soluble dimedone-derived iodonium ylides: preparation, X-ray structure, and reaction with carbodiimide leading to oxazole derivatives. Chemical Communications, 2012, 48, 10108.	4.1	48
17	Difluoro-λ ³ -Bromane-Induced Oxidative Carbonâ^'Carbon Bond-Forming Reactions:  Ethanol as an Electrophilic Partner and Alkynes as Nucleophiles. Journal of the American Chemical Society, 2008, 130, 3742-3743.	13.7	46
18	Preparation and X-ray Structural Study of Dibenziodolium Derivatives. Journal of Organic Chemistry, 2015, 80, 5783-5788.	3.2	44

#	Article	IF	Citations
19	Regioselective Zn(OAc) ₂ -catalyzed azideâ€"alkyne cycloaddition in water: the green click-chemistry. Organic Chemistry Frontiers, 2017, 4, 978-985.	4.5	44
20	Facile preparation and reactivity of bifunctional ionic liquid-supported hypervalent iodine reagent: a convenient recyclable reagent for catalytic oxidation. Tetrahedron Letters, 2012, 53, 1438-1444.	1.4	42
21	Difluoro-l̂» ³ -bromane-Induced Hofmann Rearrangement of Sulfonamides: Synthesis of Sulfamoyl Fluorides. Journal of the American Chemical Society, 2009, 131, 8392-8393.	13.7	41
22	Internal Delivery of Soft Chlorine and Bromine Atoms:  Stereoselective Synthesis of (<i>E</i>)-β-Halogenovinyl(aryl)-λ ³ -iodanes through Domino λ ³ -lodanationâ°′1,4-Halogen Shiftâ°'Fluorination of Alkynes. Organic Letters, 2007, 9, 3335-3338.	4.6	40
23	Saccharinâ€Based μâ€Oxo Imidoiodane: A Readily Available and Highly Reactive Reagent for Electrophilic Amination. Chemistry - A European Journal, 2015, 21, 5328-5331.	3.3	39
24	Pseudocyclic Arylbenziodoxaboroles: Efficient Benzyne Precursors Triggered by Water at Room Temperature. Chemistry - A European Journal, 2017, 23, 16738-16742.	3.3	39
25	Metalâ€Free [2+2+1] Annulation of Alkynes, Nitriles and Nitrogen Atoms from Iminoiodanes for Synthesis of Highly Substituted Imidazoles. Advanced Synthesis and Catalysis, 2015, 357, 667-671.	4.3	38
26	Preparation, X-ray Structure, and Reactivity of 2-lodylpyridines: Recyclable Hypervalent Iodine(V) Reagents. Journal of Organic Chemistry, 2011, 76, 3812-3819.	3.2	35
27	Oxidation of Primary Aliphatic and Aromatic Aldehydes with Difluoro(aryl)-λ ³ -bromane. Organic Letters, 2011, 13, 5568-5571.	4.6	34
28	Synthesis of Oxazoline and Oxazole Derivatives by Hypervalent-Iodine-Mediated Oxidative Cycloaddition Reactions. Synthesis, 2020, 52, 2299-2310.	2.3	33
29	Iodine(III)â€Mediated/Catalyzed Cycloisomerization–Amination Sequence of <i>N</i> â€Propargyl Carboxamides. Advanced Synthesis and Catalysis, 2017, 359, 3243-3247.	4.3	31
30	Rhodium(II)-Catalyzed Transylidation of Aryliodonium Ylides:  Electronic Effects of Aryl Groups Determine Their Thermodynamic Stabilities. Organic Letters, 2008, 10, 1425-1428.	4.6	30
31	Synthesis of 1,2,4â€Thiadiazoles by Oxidative Dimerization of Carbothioamides by Using Oxone. European Journal of Organic Chemistry, 2014, 2014, 5149-5152.	2.4	28
32	Oxidative Cycloaddition of Aldoximes with Maleimides using Catalytic Hydroxy(aryl)iodonium Species. Advanced Synthesis and Catalysis, 2016, 358, 2340-2344.	4.3	27
33	Hypervalent Iodineâ€Catalyzed Synthesis of 1,2,4â€Oxadiazoles from Aldoximes and Nitriles. Asian Journal of Organic Chemistry, 2016, 5, 1128-1133.	2.7	25
34	Preparation, Structure, and Reactivity of Pseudocyclic Benziodoxole Tosylates: New Hypervalent lodine Oxidants and Electrophiles. Chemistry - A European Journal, 2017, 23, 691-695.	3.3	25
35	One-pot synthesis of diaryliodonium salts from arenes and aryl iodides with Oxone–sulfuric acid. Beilstein Journal of Organic Chemistry, 2018, 14, 849-855.	2.2	25
36	Metalloporphyrin/Iodine(III)â€Cocatalyzed Oxygenation of Aromatic Hydrocarbons. Advanced Synthesis and Catalysis, 2010, 352, 1455-1460.	4.3	23

#	Article	IF	CITATIONS
37	Hypoioditeâ€Mediated Catalytic Cyclopropanation of Alkenes with Malononitrile. Advanced Synthesis and Catalysis, 2014, 356, 3336-3340.	4.3	23
38	Catalytic Cycloisomerization–Fluorination Sequence of <i>N</i> àâ€Propargyl Amides by Iodoarene/HFâ <pyridine 1314-1317.<="" 2016,="" 5,="" asian="" chemistry,="" journal="" of="" organic="" selectfluor="" systems.="" td=""><td>2.7</td><td>23</td></pyridine>	2.7	23
39	2-lodoxybenzoic acid ditriflate: the most powerful hypervalent iodine(<scp>v</scp>) oxidant. Chemical Communications, 2019, 55, 7760-7763.	4.1	23
40	Synthesis of Five-Membered Iodine–Nitrogen Heterocycles from Benzimidazole-Based Iodonium Salts. Journal of Organic Chemistry, 2018, 83, 12056-12070.	3.2	22
41	2-lodoxybenzoic acid organosulfonates: preparation, X-ray structure and reactivity of new, powerful hypervalent iodine(v) oxidants. Chemical Communications, 2013, 49, 11269.	4.1	21
42	Binuclear iron(III) octakis(perfluorophenyl)tetraazaporphyrin $\hat{1}\frac{1}{4}$ -oxodimer: a highly efficient catalyst for biomimetic oxygenation reactions. Tetrahedron Letters, 2014, 55, 5687-5690.	1.4	21
43	SiO2-supported RuCl3/3-(dichloroiodo)benzoic acid: green catalytic system for the oxidation of alcohols and sulfides in water. RSC Advances, $2011, 1, 973$.	3.6	20
44	Mild and efficient synthesis of iodylarenes using Oxone as oxidant. Tetrahedron Letters, 2016, 57, 4254-4256.	1.4	20
45	Development of Iminoâ€Î» ³ â€iodanes with Improved Reactivity for Metalâ€Free [2+2+1] Cycloadditionâ€Type Reactions. Advanced Synthesis and Catalysis, 2017, 359, 3860-3864.	4.3	19
46	Oxidation of benzyl alcohols with difluoro(aryl)-î»3-bromane: formation of benzyl fluoromethyl ethers via oxidative rearrangement. Tetrahedron Letters, 2009, 50, 4792-4795.	1.4	18
47	Imido transfer of sulfonylimino-λ3-bromane makes possible the synthesis of sulfonylimino-λ3-iodanes. Chemical Communications, 2009, , 959.	4.1	18
48	Facile One-Pot Synthesis of Diaryliodonium Salts from Arenes and Aryl Iodides with Oxone. ChemistryOpen, 2017, 6, 18-20.	1.9	18
49	Fluorocyclization of <i>N</i> à€Propargyl Carboxamides by λ ³ â€lodane Catalysts with Coordinating Substituents. Advanced Synthesis and Catalysis, 2020, 362, 2997-3003.	4.3	17
50	Hypervalent lodine Reagent Mediated Oxidative Heterocyclization of Aldoximes with Heterocyclic Alkenes. Journal of Organic Chemistry, 2017, 82, 11742-11751.	3.2	16
51	2″odoxybenzoic Acid Tosylates: the Alternative to Dess–Martin Periodinane Oxidizing Reagents. Advanced Synthesis and Catalysis, 2017, 359, 3207-3216.	4.3	15
52	Hypervalent Iodine(III) Reagent Mediated Regioselective Cycloaddition of Aldoximes with Enaminones. European Journal of Organic Chemistry, 2019, 2019, 6682-6689.	2.4	15
53	Oxidative cyclizations of oximes using hypervalent iodine reagents. Arkivoc, 2017, 2017, 99-116.	0.5	14
54	Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. Journal of Organic Chemistry, 2021, 86, 7163-7178.	3.2	13

#	Article	IF	CITATIONS
55	Preparation and X-ray structure of 2-iodoxybenzenesulfonic acid (IBS) – a powerful hypervalent iodine(V) oxidant. Beilstein Journal of Organic Chemistry, 2018, 14, 1854-1858.	2.2	12
56	Preparation and structure of phenolic aryliodonium salts. Chemical Communications, 2018, 54, 10363-10366.	4.1	12
57	Hypoioditeâ€Mediated Cyclopropanation of Alkenes. Chemistry - A European Journal, 2014, 20, 5895-5898.	3.3	10
58	Preparation, structure, and reactivity of bicyclic benziodazole: a new hypervalent iodine heterocycle. Beilstein Journal of Organic Chemistry, 2018, 14, 1016-1020.	2.2	10
59	Iodonium imides in organic synthesis. Arkivoc, 2020, 2019, 228-255.	0.5	10
60	Reactions of 1â€Arylbenziodoxolones with Azide Anion: Experimental and Computational Study of Substituent Effects. European Journal of Organic Chemistry, 2018, 2018, 640-647.	2.4	9
61	Preparation, Structure, and Reactivity of Pseudocyclic βâ€Trifluorosulfonyloxy Vinylbenziodoxolone Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 3365-3371.	4.3	9
62	Preparation, Xâ€ray Structure, and Reactivity of Triisopropylsilylâ€&ubstituted ArylÂiodonium Salts. European Journal of Organic Chemistry, 2015, 2015, 4831-4834.	2.4	8
63	Benziodoxole-Derived Organosulfonates: The Strongest Hypervalent Iodine Electrophiles and Oxidants. Synlett, 2020, 31, 315-326.	1.8	8
64	Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor. Electrochimica Acta, 2021, 369, 137667.	5.2	8
65	Hetero Diels–Alder Reaction and Ene Reaction of Acylnitroso Species in situ Generated by Hypoiodite Catalysis. European Journal of Organic Chemistry, 2018, 2018, 6199-6203.	2.4	7
66	Sulfonylimino Group Transfer Reaction Using Imino-l̂»3-iodanes with I2 as Catalyst Under Metal-free Conditions. Molecules, 2019, 24, 979.	3.8	7
67	Oxidative cycloaddition of hydroxamic acids with dienes or guaiacols mediated by iodine(III) reagents. Beilstein Journal of Organic Chemistry, 2018, 14, 531-536.	2.2	6
68	Synthesis and biological evaluation of novel 2-alkoxycarbonylallylester phosphonium derivatives as potential anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2021, 45, 128136.	2.2	5
69	Dehydrogenative Cycloisomerization/Arylation Sequence of <i>N</i> â€Propargyl Carboxamides with Arenes by Iodine(III) atalysis. Advanced Synthesis and Catalysis, 2022, 364, 2053-2059.	4.3	5
70	Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules, 2022, 27, 3860.	3.8	5
71	<i>In Situ</i> Generation of <i>N</i> -Triflylimino-l̂» ³ -iodanes: Application to Imidation of Phosphines and Catalytic l̂±-Amidation of 1,3-Dicarbonyl Compounds. Organic Letters, 2022, 24, 5230-5234.	4.6	5
72	Iminoâ€Î» 3 â€iodane and Catalytic Amount of I 2 â€Mediated Synthesis of N â€Allylsulfenamides via [2,3]â€6igmatropic Rearrangement. European Journal of Organic Chemistry, 2020, 2020, 6433-6439.	2.4	4

#	Article	lF	CITATIONS
73	Synthesis of arylbenziodoxoles using pseudocyclic benziodoxole triflate and arenes. Arkivoc, 2021, 2020, 35-49.	0.5	3
74	Convenient Synthesis of Benziodazolone: New Reagents for Direct Esterification of Alcohols and Amidation of Amines. Molecules, 2021, 26, 7355.	3.8	2
75	2-lodosylbenzoic acid activated by trifluoromethanesulfonic anhydride: efficient oxidant and electrophilic reagent for preparation of iodonium salts. New Journal of Chemistry, 2021, 45, 16434-16437.	2.8	1
76	Oxidation of sulfides using recyclable pseudocyclic benziodoxole triflate. Arkivoc, 2017, 2017, 32-40.	0.5	0
77	Preparation, structure, and oxidative reactivity of (dichloroiodo)pyridines: recyclable hypervalent iodine reagents. Arkivoc, 2018, 2018, 40-49.	0.5	0
78	Frontispiece: Iodonium Salts as Benzyne Precursors. Chemistry - A European Journal, 2018, 24, .	3.3	0