Ziyang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629738/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible and Wireâ€Shaped Microâ€Supercapacitor Based on Ni(OH) ₂ â€Nanowire and Ordered Mesoporous Carbon Electrodes. Advanced Functional Materials, 2014, 24, 3405-3412.	7.8	304
2	Ordered Hierarchical Mesoporous/Macroporous Carbon: A Highâ€Performance Catalyst for Rechargeable Li–O ₂ Batteries. Advanced Materials, 2013, 25, 5668-5672.	11.1	297
3	Flexible, Stretchable, and Rechargeable Fiberâ€Shaped Zinc–Air Battery Based on Crossâ€Stacked Carbon Nanotube Sheets. Angewandte Chemie - International Edition, 2015, 54, 15390-15394.	7.2	291
4	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie - International Edition, 2016, 55, 4487-4491.	7.2	189
5	<i>In situ</i> encapsulation of core–shell-structured Co@Co ₃ O ₄ into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 1443-1453.	5.2	178
6	Eggâ€Đerived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600794.	10.2	177
7	Bâ€doped Carbon Coating Improves the Electrochemical Performance of Electrode Materials for Liâ€ion Batteries. Advanced Functional Materials, 2014, 24, 5511-5521.	7.8	165
8	A Rechargeable Liâ€CO ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2017, 56, 9126-9130.	7.2	154
9	Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chemistry of Materials, 2020, 32, 3405-3413.	3.2	145
10	Double-Nanocarbon Synergistically Modified Na ₃ V ₂ (PO ₄) ₃ : An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15341-15351.	4.0	133
11	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie - International Edition, 2017, 56, 7505-7509.	7.2	124
12	A Bismuth-Based Protective Layer for Magnesium Metal Anode in Noncorrosive Electrolytes. ACS Energy Letters, 2021, 6, 2594-2601.	8.8	96
13	High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte. Chemistry of Materials, 2020, 32, 9167-9175.	3.2	81
14	A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode. Small, 2019, 15, e1803246.	5.2	80
15	Downsizing metal–organic frameworks with distinct morphologies as cathode materials for high-capacity Li–O ₂ batteries. Materials Chemistry Frontiers, 2017, 1, 1324-1330.	3.2	73
16	A lithium air battery with a lithiated Al–carbon anode. Chemical Communications, 2015, 51, 676-678.	2.2	72
17	Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. RSC Advances, 2016, 6, 71581-71588.	1.7	67
18	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63

ZIYANG GUO

#	Article	IF	CITATIONS
19	A flexible polymer-based Li–air battery using a reduced graphene oxide/Li composite anode. Journal of Materials Chemistry A, 2018, 6, 6022-6032.	5.2	59
20	Drawing a Pencilâ€Trace Cathode for a Highâ€Performance Polymerâ€Based Li–CO ₂ Battery with Redox Mediator. Advanced Functional Materials, 2019, 29, 1806863.	7.8	56
21	Lithiophilic Co/Co ₄ N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li–air batteries. Journal of Materials Chemistry A, 2018, 6, 22096-22105.	5.2	55
22	Application of sulfur-doped carbon coating on the surface of Li ₃ V ₂ (PO ₄) ₃ composites to facilitate Li-ion storage as cathode materials. Journal of Materials Chemistry A, 2015, 3, 6064-6072.	5.2	54
23	A Longâ€Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie, 2017, 129, 7613-7617.	1.6	50
24	Core-shell-structured Co@Co4N nanoparticles encapsulated into MnO-modified porous N-doping carbon nanocubes as bifunctional catalysts for rechargeable Zn–air batteries. Journal of Energy Chemistry, 2020, 50, 52-62.	7.1	49
25	<i>In situ</i> encapsulation of Co-based nanoparticles into nitrogen-doped carbon nanotubes-modified reduced graphene oxide as an air cathode for high-performance Zn–air batteries. Nanoscale, 2019, 11, 21943-21952.	2.8	46
26	TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 3352.	1.7	40
27	Pencil-drawing on nitrogen and sulfur co-doped carbon paper: An effective and stable host to pre-store Li for high-performance lithium–air batteries. Energy Storage Materials, 2020, 26, 593-603.	9.5	39
28	Enhanced hydrogen evolution of MoS ₂ /RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorganic Chemistry Frontiers, 2018, 5, 2092-2099.	3.0	36
29	Constructing in-situ polymerized electrolyte on lithiophilic anode for high-performance lithium–air batteries operating in ambient conditions. Energy Storage Materials, 2021, 43, 221-228.	9.5	35
30	A core–shell-structured TiO ₂ (B) nanofiber@porous RuO ₂ composite as a carbon-free catalytic cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 21123-21132.	5.2	31
31	A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes. Journal of Materials Chemistry A, 2020, 8, 9693-9700.	5.2	29
32	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28
33	Iridium coated Co nanoparticles embedded into highly porous N-doped carbon nanocubes grafted with carbon nanotubes as a catalytic cathode for high-performance Li–O ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 17865-17875.	5.2	26
34	Three-Dimensional Ordered Macroporous FePO ₄ as High-Efficiency Catalyst for Rechargeable Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31638-31645.	4.0	23
35	Highâ€Performance Lithium–Air Battery with a Coaxialâ€Fiber Architecture. Angewandte Chemie, 2016, 128, 4563-4567	1.6	23
36	A Rechargeable Li O ₂ Battery with a Gel Polymer Electrolyte. Angewandte Chemie, 2017, 129, 9254-9258.	1.6	22

ZIYANG GUO

#	Article	IF	CITATIONS
37	Multifunctional Cellulose Nanocrystals as a High-Efficient Polysulfide Stopper for Practical Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17592-17601.	4.0	22
38	Cationic-Polymer-Functionalized Separator As a High-Efficiency Polysulfide Shuttle Barrier for Long-Life Li–S Battery. ACS Applied Energy Materials, 2021, 4, 2914-2921.	2.5	21
39	lâ€containing Polymer/Alloy Layerâ€Based Li Anode Mediating Highâ€Performance Lithium–Air Batteries. Advanced Functional Materials, 2022, 32, 2108993.	7.8	20
40	MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries. Journal of Energy Chemistry, 2022, 69, 270-281.	7.1	20
41	A Thinâ€Film Direct Hydrogen Peroxide/Borohydride Micro Fuel Cell. Advanced Energy Materials, 2013, 3, 713-717.	10.2	19
42	Designing a new-type PMMA based gel polymer electrolyte incorporating ionic liquid for lithium oxygen batteries with Ru-based Binder-free cathode. Applied Surface Science, 2021, 565, 150612.	3.1	17
43	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	3.0	15
44	Ru-Coated metal–organic framework-derived Co-based particles embedded in porous N-doped carbon nanocubes as a catalytic cathode for a Li–O ₂ battery. Chemical Communications, 2019, 55, 10092-10095.	2.2	15
45	A mechanically robust and high-wettability multifunctional network binder for high-loading Li–S batteries with an enhanced rate property. Journal of Materials Chemistry A, 2021, 9, 22684-22690.	5.2	15
46	A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries. Electrochimica Acta, 2021, 387, 138491.	2.6	15
47	Leafâ€like Graphene Oxide with a Carbon Nanotube Midrib and Its Application in Energy Storage Devices. Advanced Functional Materials, 2013, 23, 4840-4846.	7.8	11
48	Protecting Li-metal anode with ethylenediamine-based layer and in-situ formed gel polymer electrolyte to construct the high-performance Li–CO2 battery. Journal of Power Sources, 2021, 506, 230226.	4.0	10
49	The highly dispersed Co-based nanoparticles encapsulated into porous N-doping carbon polyhedral with the low content of Ru modification as a promising cathode catalyst for long-life Li-O2 batteries. Nano Research, 2022, 15, 3204-3212.	5.8	9
50	Polydopamine-coated bimetallic ZIF derivatives as an air cathode for acidic Zn–air batteries with super-high potential. Chemical Communications, 2021, 57, 11248-11251.	2.2	8
51	A dendrite-free and stable anode for high-performance Li–O ₂ batteries by prestoring Li in reduced graphene oxide coated three-dimensional nickel foam. Chemical Communications, 2020, 56, 7645-7648.	2.2	6
52	Correction: A lithium air battery with a lithiated Al–carbon anode. Chemical Communications, 2021, 57, 3724-3724.	2.2	3
53	Rutheniumâ€Modified Bimetallic Zeoliticâ€Imidazolate Framework Derivative as a Highâ€Efficient Catalyst for Rechargeable Znicâ€Air Batteries. Batteries and Supercaps, 0, , .	2.4	3
54	Catalytic Cathodes: A Highly Reversible Longâ€Life Li–CO ₂ Battery with a RuP ₂ â€Based Catalytic Cathode (Small 29/2019). Small, 2019, 15, 1970155.	5.2	2

ZIYANG GUO

#	Article	IF	CITATIONS
55	Constructing Bimetallic ZIFâ€Derived Zn,Co ontaining Nâ€Doped Porous Carbon Nanocube as the Lithiophilic Host to Stabilize Li Metal Anodes in Liâ^'O ₂ Batteries. ChemSusChem, 2022, 15, .	3.6	2
56	Designing porous and stable Au-coated Ni nanosheets on Ni foam for quasi-symmetrical polymer Li–air batteries. Materials Chemistry Frontiers, 2022, 6, 352-359.	3.2	1
57	Znâ€Air Batteries: Eggâ€Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts (Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .	10.2	0