Alexander Zadorin

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3629668/publications.pdf
Version: 2024-02-01

Approaches to constructing two-dimensional interpolation formulas in the presence of boundary
layers. Journal of Physics: Conference Series, 2022, 2182, 012036.

Analysis of approaches to spline interpolation of functions with large gradients in the boundary layer. Journal of Physics: Conference Series, 2022, 2182, 012016.
$0.4 \quad 0$

Lagrange Interpolation and the Newtonâ€ "Cotes Formulas on a Bakhvalov Mesh in the Presence of a
Boundary Layer. Computational Mathematics and Mathematical Physics, 2022, 62, 347-358.
$0.8 \quad 1$

Non-Polynomial Interpolation of Functions with Large Gradients and Its Application. Computational
Mathematics and Mathematical Physics, 2021, 61, 167-176.
0.8

Application a cubic spline to calculate derivatives in the presence of a boundary layer. Journal of
$0.4 \quad 1$
Physics: Conference Series, 2021, 1791, 012069.

New approaches to constructing quadrature formulas for functions with large gradients. Journal of
Physics: Conference Series, 2021, 1901, 012055.
0.4

Application of Cubic Splines on Bakhvalov Meshes in the Case of a Boundary Layer. Computational
$7 \quad \begin{aligned} & \text { Application of } \\ & \text { Mathematics and Mathematical Physics, 2021, 61, 1911-1930. }\end{aligned}$
0.8

1

8 Optimization of nodes of Newton-Cotes formulas in the presence of an exponential boundary layer.
Journal of Physics: Conference Series, 2020, 1546, 012107.

9 Generalized Spline Interpolation of Functions with Large Gradients in Boundary Layers.
Computational Mathematics and Mathematical Physics, 2020, 60, 411-426.

10 Approaches to the calculation of derivatives of functions with large gradients in the boundary layer
under the values at the grid nodes. Journal of Physics: Conference Series, 2019, 1158, 022029.
0.4
0.4

0
0.8

0

Adaptive formulas of numerical differentiation of functions with large gradients. Journal of Physics:
Conference Series, 2019, 1260, 042003.
An application of the cubic spline on Shishkin mesh for the approximation of a function and its
12 derivatives in the presence of a boundary layer. Journal of Physics: Conference Series, 2019, 1210, 012017.

13 Analogue of Cubic Spline for Functions with Large Gradients in a Boundary Layer. Lecture Notes in
Computer Science, 2019, , 654-662.

Approximation of a Function and Its Derivatives on the Basis of Cubic Spline Interpolation in the
Presence of a Boundary Layer. Computational Mathematics and Mathematical Physics, 2019, 59, 343-354.
0.8

On the Parameter-Uniform Convergence of Exponential Spline Interpolation in the Presence of a
Boundary Layer. Computational Mathematics and Mathematical Physics, 2018, 58, 348-363.
0.8

Analysis of Numerical Differentiation Formulas in a Boundary Layer on a Shishkin Crid. Numerical Analysis and Applications, 2018, 11, 193-203.

3

Parabolic spline interpolation for functions with large gradient in the boundary layer. Siberian
Mathematical Journal, 2017,58, 578-590.

Cubic spline interpolation of functions with high gradients in boundary layers. Computational Mathematics and Mathematical Physics, 2017, 57, 7-25.

Two-Dimensional Interpolation of Functions with Large Gradients in Boundary Layers. Lecture Notes
in Computer Science, 2017, , 760-768.

Analogue of Newtonâ $€$ "Cotes formulas for numerical integration of functions with a boundary-layer component. Computational Mathematics and Mathematical Physics, 2016, 56, 358-366.

Analysis of polynomial interpolation of the function of two variables with large gradients in the parabolic boundary layers. AlP Conference Proceedings, 2016, , .

Interpolation of a function of two variables with large gradients in boundary layers. Lobachevskii Journal of Mathematics, 2016, 37, 349-359.

A two-grid method with Richardson extrapolation for a semilinear convection-diffusion problem. AIP
Conference Proceedings, 2015, , .

A two-grid method for elliptic problem with boundary layers. Applied Numerical Mathematics, 2015, 93, 270-278.

Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components
on piecewise-uniform grids. Numerical Analysis and Applications, 2015, 8, 235-247.

The Analysis of Lagrange Interpolation for Functions with a Boundary Layer Component. Lecture
Notes in Computer Science, 2015, , 426-432.

Modification of the Euler quadrature formula for functions with a boundary-layer component.
Computational Mathematics and Mathematical Physics, 2014, 54, 1489-1498.

Solving a second-order nonlinear singular perturbation ordinary differential equation by a Samarskii scheme. Numerical Analysis and Applications, 2013, 6, 9-23.

Cubature formulas for a two-variable function with boundary-layer components. Computational Mathematics and Mathematical Physics, 2013, 53, 1808-1818.

An analogue of the four-point Newton-Cotes formula for a function with a boundary-layer component. Numerical Analysis and Applications, 2013, 6, 268-278.
0.4

Difference Scheme on a Uniform Grid for the Singularly Perturbed Cauchy Problem. Journal of Mathematical Sciences, 2013, 195, 865-872.

Quadrature Formula with Five Nodes for Functions with a Boundary Layer Component. Lecture Notes
in Computer Science, 2013, , 540-546.

Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids.
Numerical Analysis and Applications, 2011, 4, 36-45.

Quadrature formulas for functions with a boundary-layer component. Computational Mathematics and Mathematical Physics, 2011, 51, 1837-1846.
37

A Two-Grid Algorithm for Solution of the Difference Equations of a System of Singularly Perturbed Semilinear Equations. Lecture Notes in Computer Science, 2009, , 580-587.

41	Refined-mesh interpolation method for functions with a boundary-layer component. Computa Mathematics and Mathematical Physics, 2008, 48, 1634-1645.
42	Two-grid Interpolation Algorithms for Difference Schemes of Exponential Type for Semilinear Diffusion Convection-Dominated Equations. , 2008, , .

```
Numerical solution of the third boundary value problem for an equation with a small parameter. USSR Computational Mathematics and Mathematical Physics, 1984, 24, 28-33.
```

