
Arturo Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629598/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics, 2012, 12, 2313-2343.	1.9	510
2	Tracking of Airborne Radionuclides from the Damaged Fukushima Dai-Ichi Nuclear Reactors by European Networks. Environmental Science & Technology, 2011, 45, 7670-7677.	4.6	333
3	Uncertainty Analysis of the Weighted Equivalent Lung Dose per Unit Exposure to Radon Progeny in the Home. Radiation Protection Dosimetry, 2002, 102, 229-248.	0.4	57
4	Influence of environmental changes on integrating radon detectors: results of an intercomparison exercise. Radiation Protection Dosimetry, 2007, 123, 529-536.	0.4	42
5	Atmospheric 222Rn concentration and source term at El Arenosillo 100Âm meteorological tower in southwest Spain. Radiation Measurements, 2012, 47, 149-162.	0.7	40
6	Influence of the Fukushima Dai-ichi nuclear accident on Spanish environmental radioactivity levels. Journal of Environmental Radioactivity, 2012, 114, 138-145.	0.9	38
7	Inter-comparison of different direct and indirect methods to determine radon flux from soil. Radiation Measurements, 2011, 46, 112-118.	0.7	32
8	Analysis of the vertical radon structure at the Spanish "El Arenosillo―tower station. Journal of Environmental Radioactivity, 2015, 139, 1-17.	0.9	32
9	Study of the daily and seasonal atmospheric CH ₄ mixing ratio variability in a rural Spanish region using ²²² Rn tracer. Atmospheric Chemistry and Physics, 2018, 18, 5847-5860.	1.9	24
10	Analysis of radon origin by backward atmospheric transport modelling. Atmospheric Environment, 2010, 44, 494-502.	1.9	23
11	Influence of environmental changes on continuous radon monitors. results of a Spanish intercomparison exercise. Radiation Protection Dosimetry, 2006, 121, 303-309.	0.4	22
12	Analysis of outdoor radon progeny concentration measured at the Spanish radioactive aerosol automatic monitoring network. Applied Radiation and Isotopes, 2009, 67, 833-838.	0.7	21
13	Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain. Journal of Hazardous Materials, 2014, 280, 464-471.	6.5	20
14	Traceability of radon-222 activity concentration in the radon chamber at the technical university of Catalonia (Spain). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 526, 501-509.	0.7	19
15	New metrology for radon at the environmental level. Measurement Science and Technology, 2021, 32, 124008.	1.4	19
16	Radon activity concentration—a Euromet and BIPM supplementary comparison. Applied Radiation and Isotopes, 2006, 64, 1102-1107.	0.7	17
17	The work programme of EURADOS on internal and external dosimetry. Annals of the ICRP, 2018, 47, 20-34.	3.0	17
18	The role of mesoscale meteorology in modulating the 222 Rn concentrations in Huelva (Spain) – impact of phosphogypsum piles. Journal of Environmental Radioactivity, 2015, 145, 1-9.	0.9	16

ARTURO VARGAS

#	Article	IF	CITATIONS
19	An Unmanned Aircraft System to Detect a Radiological Point Source Using RIMA Software Architecture. Remote Sensing, 2018, 10, 1712.	1.8	16
20	The European radiation dosimetry group – Review of recent scientific achievements. Radiation Physics and Chemistry, 2020, 168, 108514.	1.4	16
21	REFLECT – Research flight of EURADOS and CRREAT: Intercomparison of various radiation dosimeters onboard aircraft. Radiation Measurements, 2020, 137, 106433.	0.7	16
22	Applicability of the closed-circuit accumulation chamber technique to measure radon surface exhalation rate under laboratory conditions. Radiation Measurements, 2020, 133, 106284.	0.7	16
23	EURADOS STRATEGIC RESEARCH AGENDA 2020: VISION FOR THE DOSIMETRY OF IONISING RADIATION. Radiation Protection Dosimetry, 2021, 194, 42-56.	0.4	16
24	Activity size distributions for long-lived radon decay products in aerosols collected in Barcelona (Spain). Applied Radiation and Isotopes, 2009, 67, 872-875.	0.7	15
25	Ambient dose estimation H*(10) from LaBr3(Ce) spectra. Radiation Protection Dosimetry, 2014, 160, 264-268.	0.4	15
26	Short- versus long-term radon detectors: a comparative study in Galicia, NW Spain. Journal of Environmental Radioactivity, 2008, 99, 1121-1126.	0.9	14
27	Determination of LaBr 3 (Ce) internal background using a HPGe detector and Monte Carlo simulations. Applied Radiation and Isotopes, 2016, 109, 512-517.	0.7	14
28	Characteristics and temporal variation of airborne radon decay progeny in the indoor environment in Catalonia (Spain). Environment International, 1996, 22, 149-159.	4.8	12
29	Dose Conversion Factor for Radon Concentration in Indoor Environments Using A New Equation for the F-fP Correlation. Health Physics, 2000, 78, 80-85.	0.3	12
30	Equivalence of computer codes for calculation of coincidence summing correction factors – Part II. Applied Radiation and Isotopes, 2016, 109, 482-486.	0.7	12
31	Intercomparison study of atmospheric ²²² Rn and ²²² Rn progeny monitors. Atmospheric Measurement Techniques, 2020, 13, 2241-2255.	1.2	11
32	Intercomparison of Radon Flux Monitors at Low and at High Radium Content Areas under Field Conditions. International Journal of Environmental Research and Public Health, 2022, 19, 4213.	1.2	11
33	Analysis of groundâ€based ²²² Rn measurements over Spain: Filling the gap in southwestern Europe. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,021.	1.2	10
34	Comparison of airborne radiation detectors carried by rotary-wing unmanned aerial systems. Radiation Measurements, 2021, 145, 106595.	0.7	9
35	Development and operational performance of a single calibration chamber for radon detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 1135-1140.	0.7	8
36	EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds. Natural Hazards and Earth System Sciences, 2021, 21, 3367-3405.	1.5	8

ARTURO VARGAS

#	Article	IF	CITATIONS
37	Radon metrology for use in climate change observation and radiation protection at the environmental level. Advances in Geosciences, 0, 57, 37-47.	12.0	8
38	Influence of natural radioactive aerosols on artificial radioactivity detection in the Spanish surveillance networks. Applied Radiation and Isotopes, 2008, 66, 1627-1631.	0.7	7
39	Comparison of methods for H* (10) calculation from measured LaBr 3 (Ce) detector spectra. Applied Radiation and Isotopes, 2018, 137, 241-249.	0.7	7
40	Coincidence summing corrections for volume samples using the PENELOPE/penEasy Monte Carlo code. Applied Radiation and Isotopes, 2014, 87, 376-379.	0.7	6
41	Radon behavior investigation based on cluster analysis and atmospheric modelling. Atmospheric Environment, 2019, 201, 50-61.	1.9	6
42	Radon transport events associated with the impact of a NORM repository in the SW of Europe. Environmental Pollution, 2021, 289, 117963.	3.7	6
43	First estimation of CH ₄ fluxes using the ²²² Rn Tracer Method over the central Iberian Peninsula. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	6
44	Dry deposition velocity of 137 Cs and 134 Cs in Spain after the Fukushima Dai-Ichi Nuclear Power Plant accident. Applied Radiation and Isotopes, 2016, 109, 441-443.	0.7	5
45	The Metrological Traceability, Performance and Precision of European Radon Calibration Facilities. International Journal of Environmental Research and Public Health, 2021, 18, 12150.	1.2	5
46	Lagrangian Models for Nuclear Studies: Examples and Applications. Geophysical Monograph Series, 0, , 329-348.	0.1	4
47	INFLUENCE OF RADON PROGENY ON DOSE RATE MEASUREMENTS STUDIED AT PTB'S RADON REFERENCE CHAMBER. Radiation Protection Dosimetry, 2017, 177, 407-414.	0.4	4
48	Low-Level Radon Activity Concentration—A MetroRADON International Intercomparison. International Journal of Environmental Research and Public Health, 2022, 19, 5810.	1.2	4
49	Intercomparison of Approximation Algorithms for the Determination of the Size Distribution of the "Unattached" Fraction of Radon Progeny. Aerosol Science and Technology, 2000, 33, 261-273.	1.5	3
50	Comparison of calibration facilities for radon activity concentration: Euromet Project 657. Metrologia, 2005, 42, 06003-06003.	0.6	3
51	Determination of 218Po nanometer size distribution in a controlled environment by two new systems. Radioactivity in the Environment, 2005, 7, 361-370.	0.2	3
52	Effectiveness Analysis of Filters Used with Radon Detectors under Extreme Environmental Conditions for Long-term Exposures. Physics Procedia, 2015, 80, 113-116.	1.2	3
53	EURADOS education and training activities. Journal of Radiological Protection, 2019, 39, R37-R50.	0.6	3
54	Validation of aerosol low-level activities by comparison with a deep underground laboratory. Applied Radiation and Isotopes, 2014, 87, 66-69.	0.7	2

ARTURO VARGAS

#	Article	IF	CITATIONS
55	Study of the variation of 222Rn indoor concentration with several passive detectors and an active detection system. Environment International, 1996, 22, 601-606.	4.8	1
56	The influence of non-uniform particle deposition on the 218Po diffusion coefficient measured with the "two-filter―method. Journal of Aerosol Science, 2001, 32, 1389-1395.	1.8	1
57	Intercomparison exercise of calibration facilities for radon gas activity concentration. Radioactivity in the Environment, 2005, , 306-313.	0.2	1
58	Analysis of the natural radon progeny contribution to radioactive aerosol monitoring in the automatic Spanish surveillance network. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	1
59	Metrology for low-cost CO ₂ sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO ₂ fluxes observations. Atmospheric Measurement Techniques, 2022, 15, 2807-2818.	1.2	1
60	Dose assessment at a phosphate industry landfill using solid state detectors. Radiation Measurements, 2008, 43, 664-667.	0.7	0
61	Dose calculations in aircrafts after Fukushima nuclear power plant accident – Preliminary study for aviation operations. Journal of Environmental Radioactivity, 2019, 205-206, 24-33.	0.9	0
62	Application of Back Trajectories Using Flextra to Identify the Origin of 137Cs Measured in the City of Barcelona. NATO Security Through Science Series C: Environmental Security, 2008, , 661-662.	0.1	0