Brett M Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3629056/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Lymphatics in Cardiovascular Physiology. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041173.	2.9	3
2	A Kidney-Targeted Nanoparticle to Augment Renal Lymphatic Density Decreases Blood Pressure in Hypertensive Mice. Pharmaceutics, 2022, 14, 84.	2.0	6
3	Hypertension Induces Gonadal Macrophage Imbalance, Inflammation, Lymphangiogenesis, and Dysfunction. Clinical Science, 2022, , .	1.8	1
4	Hypertensive Stimuli Indirectly Stimulate Lymphangiogenesis through Immune Cell Secreted Factors. Cells, 2022, 11, 2139.	1.8	1
5	Time restricted feeding decreases renal innate immune cells and blood pressure in hypertensive mice. Journal of Hypertension, 2022, 40, 1960-1968.	0.3	8
6	Abstract MP40: Microbiome-associated Metabolites Are Altered In Mouse Models Of Hypertension. Hypertension, 2021, 78, .	1.3	0
7	Abstract 16: Altered Testicular Macrophage Polarization Is Associated With Reproductive Dysfunction In Hypertensive Mice. Hypertension, 2021, 78, .	1.3	О
8	Abstract MP42: Metabolomic Study To Identify Common Metabolites In Two Different Mouse Models Of Hypertension. Hypertension, 2021, 78, .	1.3	0
9	Abstract P203: Time-restricted Feeding Attenuates Hypertension In Mice. Hypertension, 2021, 78, .	1.3	Ο
10	Abstract P217: Imbalance Of M1/M2 Macrophages In Ovaries Of Hypertensive Mice Is Associated With Reproductive Dysfunction And Lymphangiogenesis. Hypertension, 2021, 78, .	1.3	0
11	Abstract MP52: Hypertensive Stimuli Indirectly Stimulate Mouse Mesometrial Lymphangiogenesis Through Immune Cells. Hypertension, 2021, 78, .	1.3	Ο
12	Common Metabolites in Two Different Hypertensive Mouse Models: A Serum and Urine Metabolome Study. Biomolecules, 2021, 11, 1387.	1.8	4
13	High Dose Vardenafil Blunts the Hypertensive Effects of Toll-Like Receptor 3 Activation During Pregnancy. Frontiers in Virology, 2021, 1, .	0.7	1
14	Augmenting Renal Lymphatic Density Prevents Angiotensin II-Induced Hypertension in Male and Female Mice. American Journal of Hypertension, 2020, 33, 61-69.	1.0	27
15	Kidney-specific lymphangiogenesis increases sodium excretion and lowers blood pressure in mice. Journal of Hypertension, 2020, 38, 874-885.	0.3	25
16	Hypertension and reproductive dysfunction: a possible role of inflammation and inflammation-associated lymphangiogenesis in gonads. Clinical Science, 2020, 134, 3237-3257.	1.8	6
17	Abstract P132: A Kidney-Targeted Nanoparticle To Augment Renal Lymphatic Density Decreases Blood Pressure In Mice With L-NAME- And Angiotensin II-Induced Hypertension. Hypertension, 2020, 76, .	1.3	0
18	Abstract P146: Testicular Inflammation Is Associated With Immune Cell Infiltration And Lymphangiogenesis In L-NAME-induced Hypertension. Hypertension, 2020, 76, .	1.3	0

#	Article	IF	CITATIONS
19	Immune cell trafficking, lymphatics and hypertension. British Journal of Pharmacology, 2019, 176, 1978-1988.	2.7	22
20	Application of Nutraceuticals in Pregnancy Complications: Does Epigenetics Play a Role?. , 2019, , 1957-1975.		0
21	ls IL-12 pro-inflammatory or anti-inflammatory? Depends on the blood pressure. Cardiovascular Research, 2019, 115, 998-999.	1.8	13
22	Abstract P3020: Therapeutic Induction of Renal Lymphatic Expansion Attenuates Blood Pressure in Mice With L-NAME Hypertension. Hypertension, 2019, 74, .	1.3	0
23	Abstract 143: Enhancing Renal Lymphatic Vessel Density Blunts Both Salt-Sensitive and Angiotensin II-Dependent Hypertension in Mice. Hypertension, 2019, 74, .	1.3	Ο
24	Enhancing Renal Lymphatic Expansion Prevents Hypertension in Mice. Circulation Research, 2018, 122, 1094-1101.	2.0	59
25	Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A–Induced Hypertension in Mice. Hypertension, 2018, 71, 199-207.	1.3	17
26	Both maternal and placental toll-like receptor activation are necessary for the full development of proteinuric hypertension in mice. Pregnancy Hypertension, 2018, 13, 154-160.	0.6	4
27	Abstract P166: Identification of <i>Cyr61</i> and <i>Tfgbi</i> as Hypertensive Renal LEC Genes. Hypertension, 2018, 72, .	1.3	0
28	Abstract 024: Genetically Inducing Renal Lymphangiogenesis Prevents Angiotensin II-Induced Hypertension in Mice. Hypertension, 2018, 72, .	1.3	0
29	Toll-like receptor activation, vascular endothelial function, and hypertensive disorders of pregnancy. Pharmacological Research, 2017, 121, 14-21.	3.1	18
30	Recent Advances in Immunity and Hypertension. American Journal of Hypertension, 2017, 30, 643-652.	1.0	23
31	Renal inflammation and injury are associated with lymphangiogenesis in hypertension. American Journal of Physiology - Renal Physiology, 2017, 312, F861-F869.	1.3	35
32	Depletion of MHC class II invariant chain peptide or γ–δT-cells ameliorates experimental preeclampsia. Clinical Science, 2017, 131, 2047-2058.	1.8	14
33	Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor–Induced Hypertension in Mice. Hypertension, 2017, 70, 183-191.	1.3	17
34	Human placenta-derived stromal cells decrease inflammation, placental injury and blood pressure in hypertensive pregnant mice. Clinical Science, 2016, 130, 513-523.	1.8	31
35	Abstract P145: Renal Inflammation and Injury is Associated with Increased Lymphangiogenesis in Hypertension, 2016, 68, .	1.3	1
36	Phosphorylation of Cardiac Myosin-Binding Protein-C Is a Critical Mediator of Diastolic Function. Circulation: Heart Failure, 2015, 8, 582-594.	1.6	92

#	Article	IF	CITATIONS
37	Four Pathways Involving Innate Immunity in the Pathogenesis of Preeclampsia. Frontiers in Cardiovascular Medicine, 2015, 2, 20.	1.1	21
38	Cotreatment With Interleukin 4 and Interleukin 10 Modulates Immune Cells and Prevents Hypertension in Pregnant Mice. American Journal of Hypertension, 2015, 28, 135-142.	1.0	56
39	Regulation of the Anti-Inflammatory Cytokines Interleukin-4 and Interleukin-10 during Pregnancy. Frontiers in Immunology, 2014, 5, 253.	2.2	216
40	Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovascular Research, 2013, 97, 696-704.	1.8	221
41	Interleukin-4 deficiency induces mild preeclampsia in mice. Journal of Hypertension, 2013, 31, 1414-1423.	0.3	41
42	TLR3-Induced Placental miR-210 Down-Regulates the STAT6/Interleukin-4 Pathway. PLoS ONE, 2013, 8, e67760.	1.1	53
43	Endothelial cell transforming growth factor-β receptor activation causes tacrolimus-induced renal arteriolar hyalinosis. Kidney International, 2012, 82, 857-866.	2.6	27
44	Placental Toll-Like Receptor 3 and Toll-Like Receptor 7/8 Activation Contributes to Preeclampsia in Humans and Mice. PLoS ONE, 2012, 7, e41884.	1.1	107
45	778: Excessive placental Toll-like receptor 7/8 signaling contributes to human and experimental preeclampsia. American Journal of Obstetrics and Gynecology, 2012, 206, S343.	0.7	0
46	796: The role of single-stranded RNA in the development of preeclampsia. American Journal of Obstetrics and Gynecology, 2012, 206, S350.	0.7	0
47	Do double-stranded RNA receptors play a role in preeclampsia?. Placenta, 2011, 32, 201-205.	0.7	20
48	742: IL-4 KO mice exhibit gestational hypertension which is augmented following dsRNA-induced maternal immune system activation. American Journal of Obstetrics and Gynecology, 2011, 204, S292.	0.7	0
49	769: Activation of double-stranded rna receptors contributes to preeclampsia. American Journal of Obstetrics and Gynecology, 2011, 204, S302.	0.7	0
50	Pin1 Deficiency Causes Endothelial Dysfunction and Hypertension. Hypertension, 2011, 58, 431-438.	1.3	35
51	Protein Kinase Cβ _{II} -Mediated Phosphorylation of Endothelial Nitric Oxide Synthase Threonine 495 Mediates the Endothelial Dysfunction Induced by FK506 (Tacrolimus). Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 718-723.	1.3	25
52	Fk506 Binding Protein 12 Deficiency in Endothelial and Hematopoietic Cells Decreases Regulatory T Cells and Causes Hypertension. Hypertension, 2011, 57, 1167-1175.	1.3	73
53	Interleukin 10 Deficiency Exacerbates Toll-Like Receptor 3–Induced Preeclampsia-Like Symptoms in Mice. Hypertension, 2011, 58, 489-496.	1.3	87
54	Resibufogenin Prevents the Manifestations of Preeclampsia in an Animal Model of the Syndrome. Hypertension in Pregnancy, 2010, 29, 1-9.	0.5	28

#	Article	IF	CITATIONS
55	Interleukin-10 reduces inflammation, endothelial dysfunction, and blood pressure in hypertensive pregnant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R713-R719.	0.9	98
56	Immunosuppression Improves Blood Pressure and Endothelial Function in a Rat Model of Pregnancy-Induced Hypertension. American Journal of Hypertension, 2009, 22, 1107-1114.	1.0	35
57	Toll-Like Receptor 3 Activation During Pregnancy Elicits Preeclampsia-Like Symptoms in Rats. American Journal of Hypertension, 2009, 22, 1314-1319.	1.0	70
58	Tacrolimus reduces nitric oxide synthase function by binding to FKBP rather than by its calcineurin effect. Kidney International, 2009, 75, 719-726.	2.6	38
59	Increased nitric oxide synthase activity and Hsp90 association in skeletal muscle following chronic exercise. European Journal of Applied Physiology, 2008, 104, 795-802.	1.2	61
60	Marinobufagenin Inhibits Proliferation and Migration of Cytotrophoblast and CHO Cells. Placenta, 2008, 29, 266-273.	0.7	40
61	The endocannabinoid anandamide inhibits cholangiocarcinoma growth via activation of the noncanonical Wnt signaling pathway. American Journal of Physiology - Renal Physiology, 2008, 295, G1150-G1158.	1.6	73
62	Examination of the Cellular Mechanisms by Which Marinobufagenin Inhibits Cytotrophoblast Function. Journal of Biological Chemistry, 2008, 283, 17946-17953.	1.6	43
63	The Immunosuppressive drugs rapamycin and FK506 decrease vasodilation by increasing PKCbetaiâ€mediated phosphorylation of eNOS Thr495. FASEB Journal, 2008, 22, 964.32.	0.2	Ο
64	The immunophilin inhibitor juglone decreases NO bioavailability and vasodilation by inhibiting glutathione Sâ€transferase. FASEB Journal, 2008, 22, .	0.2	0
65	Removal of Fkbp12/12.6 From Endothelial Ryanodine Receptors Leads to an Intracellular Calcium Leak and Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1580-1586.	1.1	38
66	FK506 Binding Protein 12/12.6 Depletion Increases Endothelial Nitric Oxide Synthase Threonine 495 Phosphorylation and Blood Pressure. Hypertension, 2007, 49, 569-576.	1.3	49
67	Animal Models of Hypertension. Methods in Molecular Medicine, 2007, 139, 105-111.	0.8	3
68	Uncoupled Endothelial Nitric Oxide Synthase and Oxidative Stress in a Rat Model of Pregnancy-Induced Hypertension. American Journal of Hypertension, 2007, 20, 1297-1304.	1.0	53
69	Displacement of FKBP12 and 12.6 from ryanodine receptors abolishes endothelial nitric oxide production and augments blood pressure. FASEB Journal, 2007, 21, A862.	0.2	Ο
70	Mice with the R176Q cardiac ryanodine receptor mutation exhibit catecholamine-induced ventricular tachycardia and cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12179-12184.	3.3	172
71	Altered FKBP12/12.6 decreases NO production by increasing cPKCâ€mediated phosphorylation of eNOS at thr495. FASEB Journal, 2006, 20, A719.	0.2	0
72	Sepiapterin Decreases Vasorelaxation in Nitric Oxide Synthase Inhibition–Induced Hypertension. Journal of Cardiovascular Pharmacology, 2004, 43, 93-98.	0.8	20

#	Article	IF	CITATIONS
73	Phenylalanine Improves Dilation and Blood Pressure in GTP Cyclohydrolase Inhibition-Induced Hypertensive Rats. Journal of Cardiovascular Pharmacology, 2004, 43, 758-763.	0.8	29
74	Glucocorticoids Decrease GTP Cyclohydrolase and Tetrahydrobiopterin-dependent Vasorelaxation through Glucocorticoid Receptors. Journal of Cardiovascular Pharmacology, 2004, 43, 8-13.	0.8	39
75	GTP Cyclohydrolase 1 Downregulation Contributes to Glucocorticoid Hypertension in Rats. Hypertension, 2003, 41, 669-674.	1.3	46
76	GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2165-H2170.	1.5	30
77	Heart Rates During an Intensity-Controlled One-Mile Run in 11- to 14-Year-Old Children. Measurement in Physical Education and Exercise Science, 2001, 5, 109-115.	1.3	1
78	New Standards for the Bruce Treadmill Protocol in Children and Adolescents. Pediatric Exercise Science, 2001, 13, 392-401.	0.5	20
79	Update on Immune Mechanisms in Hypertension. American Journal of Hypertension, 0, , .	1.0	3