ZoltÃ;n PÃ3s

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3628497/publications.pdf Version: 2024-02-01

ΖΟΙΤΑ:Ν ΡΑ3ς

#	Article	IF	CITATIONS
1	Decreased Plasma Level of Cytokeratin 20 (KRT20) Is Indicative of the Emergence and Severity of Acute GvHD Irrespective to the Type of Organ Involvement. Biomedicines, 2022, 10, 519.	3.2	1
2	Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune checkpoint regulators via increased arginase activity. Cellular and Molecular Life Sciences, 2021, 78, 661-673.	5.4	37
3	Mesenchymal-Stromal Cell-like Melanoma-Associated Fibroblasts Increase IL-10 Production by Macrophages in a Cyclooxygenase/Indoleamine 2,3-Dioxygenase-Dependent Manner. Cancers, 2021, 13, 6173.	3.7	5
4	B-T Cell Interactions in GRAFT-Versus-Host Disease. Blood, 2020, 136, 38-38.	1.4	0
5	Skinâ€homing CD8 ⁺ TÂcells preferentially express GPlâ€anchored peptidase inhibitor 16, an inhibitor of cathepsin K. European Journal of Immunology, 2018, 48, 1944-1957.	2.9	16
6	Unique patterns of CD8+ T-cell-mediated organ damage in the Act-mOVA/OT-I model of acute graft-versus-host disease. Cellular and Molecular Life Sciences, 2016, 73, 3935-3947.	5.4	2
7	Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology. Journal of Investigative Dermatology, 2014, 134, 1389-1396.	0.7	3
8	High-dimensional analysis of the aging immune system: Verification of age-associated differences in immune signaling responses in healthy donors. Journal of Translational Medicine, 2014, 12, 178.	4.4	5
9	Global Analyses of Human Immune Variation Reveal Baseline Predictors of Postvaccination Responses. Cell, 2014, 157, 499-513.	28.9	424
10	Differential Responses of Plasmacytoid Dendritic Cells to Influenza Virus and Distinct Viral Pathogens. Journal of Virology, 2014, 88, 10758-10766.	3.4	28
11	Melanoma NOS1 expression promotes dysfunctional IFN signaling. Journal of Clinical Investigation, 2014, 124, 2147-2159.	8.2	40
12	RDH10, RALDH2, and CRABP2 are required components of PPARÎ ³ -directed ATRA synthesis and signaling in human dendritic cells. Journal of Lipid Research, 2013, 54, 2458-2474.	4.2	26
13	Single-Cell Network Profiling of Peripheral Blood Mononuclear Cells from Healthy Donors Reveals Age- and Race-Associated Differences in Immune Signaling Pathway Activation. Journal of Immunology, 2012, 188, 1717-1725.	0.8	44
14	The stable traits of melanoma genetics: an alternate approach to target discovery. BMC Genomics, 2012, 13, 156.	2.8	29
15	Racial differences in B cell receptor signaling pathway activation. Journal of Translational Medicine, 2012, 10, 113.	4.4	20
16	Inter-donor variation in cell subset specific immune signaling responses in healthy individuals. American Journal of Clinical and Experimental Immunology, 2012, 1, 1-11.	0.2	5
17	Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nature Immunology, 2011, 12, 1230-1237.	14.5	165
18	A human memory T cell subset with stem cell–like properties. Nature Medicine, 2011, 17, 1290-1297.	30.7	1,547

ZoltÃin Pós

#	Article	IF	CITATIONS
19	Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68. BMC Cancer, 2011, 11, 451.	2.6	20
20	Single Cell Network Profiling (SCNP) Reveals Race-Associated Differences in B Cell Receptor Signaling Pathway Activation. Blood, 2011, 118, 1125-1125.	1.4	0
21	Histamine in Normal and Malignant Cell Proliferation. Advances in Experimental Medicine and Biology, 2010, 709, 109-123.	1.6	15
22	Genomic scale analysis of racial impact on response to IFN-α. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 803-808.	7.1	15
23	Serum Vascular Endothelial Growth Factor and Fibronectin Predict Clinical Response to High-Dose Interleukin-2 Therapy. Journal of Clinical Oncology, 2009, 27, 2645-2652.	1.6	167
24	Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics, 2009, 10, 301.	2.8	77
25	Molecular immune signatures of HIVâ€l vaccines in human PBMCs. FEBS Letters, 2009, 583, 3004-3008.	2.8	23
26	Antitumor vaccines, immunotherapy and the immunological constant of rejection. IDrugs: the Investigational Drugs Journal, 2009, 12, 297-301.	0.7	10
27	Decreased expression of histamine H1 and H4 receptors suggests disturbance of local regulation in human colorectal tumours by histamine. European Journal of Cell Biology, 2008, 87, 227-236.	3.6	57
28	GM-CSF/IL-3/IL-5 receptor common β chain (CD131) expression as a biomarker of antigen-stimulated CD8+ T cells. Journal of Translational Medicine, 2008, 6, 17.	4.4	14
29	Spontaneous and treatment-induced cancer rejection in humans. Expert Opinion on Biological Therapy, 2008, 8, 337-349.	3.1	20
30	Histamine Suppresses Fibulin-5 and Insulin-like Growth Factor-II Receptor Expression in Melanoma. Cancer Research, 2008, 68, 1997-2005.	0.9	20
31	Histamine Genomics and Metabolomics. , 2006, , 371-394.		Ο
32	Phenotypic Profiling of Engineered Mouse Melanomas with Manipulated Histamine Production Identifies Histamine H2 Receptor and Rho-C as Histamine-Regulated Melanoma Progression Markers. Cancer Research, 2005, 65, 4458-4466.	0.9	32
33	Histamine elevates the expression of Ets-1, a protooncogen in human melanoma cell lines through H2 receptor. FEBS Letters, 2005, 579, 2475-2479.	2.8	15
34	Negative regulatory effect of histamine in DNFB-induced contact hypersensitivity. International Immunology, 2004, 16, 1781-1788.	4.0	16
35	Different patterns of the L-histidine decarboxylase (HDC) gene expression in mice resistant and susceptible to experimental cutaneous leishmaniasis. Inflammation Research, 2004, 53, 38-43.	4.0	10
36	Paracrine and autocrine interactions in melanoma: histamine is a relevant player in local regulation. Trends in Immunology, 2001, 22, 648-652.	6.8	57

#	Article	IF	CITATIONS
37	Inhibition of effects of endogenously synthesized histamine disturbs in vitro human dendritic cell differentiation. Immunology Letters, 2001, 76, 175-182.	2.5	81
38	Both interferon (IFN) α and IFN γ inhibit histidine decarboxylase expression in the HT168 human melanoma cell line. Inflammation Research, 2000, 49, 393-397.	4.0	14