
Ekaterina V Shishkina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3628490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology, 2021, 15, 205-222.	3.0	6
2	Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 3466.	4.1	8
3	Impact of toxicity effects of zinc oxide nanoparticles in rats within acute and subacute experiments. Gigiena I Sanitariia, 2021, 100, 704-710.	0.5	0
4	Comparative and Combined In Vitro Vasotoxicity of Nanoparticles Containing Lead and Cadmium. Dose-Response, 2021, 19, 155932582098216.	1.6	2
5	General toxic and cardiovascular toxic impact of cadmium oxide nanoparticles. Gigiena I Sanitariia, 2021, 99, 1346-1352.	0.5	1
6	Influence of Humidity on Local Polarization Reversal in a Rb:KTP Single Crystal. ACS Applied Electronic Materials, 2021, 3, 260-266.	4.3	6
7	New Data on Variously Directed Dose-Response Relationships and the Combined Action Types for Different Outcomes of <i>in Vitro</i> Nanoparticle Cytotoxicity. Dose-Response, 2021, 19, 155932582110524.	1.6	5
8	As-Grown Domain Structure in Calcium Orthovanadate Crystals. Crystals, 2021, 11, 1508.	2.2	3
9	An overview of experiments with lead-containing nanoparticles performed by the Ekaterinburg nanotoxicological research team. Nanotoxicology, 2020, 14, 788-806.	3.0	3
10	Some Peculiarities in the Dose Dependence of Separate and Combined In Vitro Cardiotoxicity Effects Induced by CdS and PbS Nanoparticles With Special Attention to Hormesis Manifestations. Dose-Response, 2020, 18, 155932582091418.	1.6	12
11	Manifestation of Systemic Toxicity in Rats after a Short-Time Inhalation of Lead Oxide Nanoparticles. International Journal of Molecular Sciences, 2020, 21, 690.	4.1	22
12	More data on in vitro assessment of comparative and combined toxicity of metal oxide nanoparticles. Food and Chemical Toxicology, 2019, 133, 110753.	3.6	15
13	Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 1778.	4.1	33
14	Nanoparticles for treatment of atherosclerosis: challenges of plasmonic photothermal therapy in translational studies. Future Cardiology, 2018, 14, 109-114.	1.2	7
15	Combined Subchronic Toxicity of Aluminum (III), Titanium (IV) and Silicon (IV) Oxide Nanoparticles and Its Alleviation with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2018, 19, 837.	4.1	28
16	In vivo toxicity of copper oxide, lead oxide and zinc oxide nanoparticles acting in different combinations and its attenuation with a complex of innocuous bio-protectors. Toxicology, 2017, 380, 72-93.	4.2	74
17	A paradoxical response of the rat organism to long-term inhalation of silica-containing submicron (predominantly nanoscale) particles of a collected industrial aerosol at realistic exposure levels. Toxicology, 2017, 384, 59-68.	4.2	35
18	Are inÂvivo and inÂvitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn 3 O 4 nanoparticles. Food and Chemical Toxicology, 2017, 109, 393-404.	3.6	23

EKATERINA V SHISHKINA

#	Article	IF	CITATIONS
19	Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. Nanomedicine and Nanotoxicology, 2017, , 259-319.	0.2	20
20	Plasmonic photothermal therapy of atherosclerosis with nanoparticles: long-term outcomes and safety in NANOM-FIM trial. Future Cardiology, 2017, 13, 345-363.	1.2	64
21	Looking for Biological Protectors against Adverse Health Effects of Some Nanoparticles that Can Pollute Workplace and Ambient Air (A Summary of Authors' Experimental Results). Journal of Environmental Protection, 2017, 08, 844-866.	0.7	7
22	On the contribution of the phagocytosis and the solubilization to the iron oxide nanoparticles retention in and elimination from lungs under long-term inhalation exposure. Toxicology, 2016, 363-364, 19-28.	4.2	41
23	Some inferences from in vivo experiments with metal and metal oxide nanoparticles: the pulmonary phagocytosis response, subchronic systemic toxicity and genotoxicity, regulatory proposals, searching for bioprotectors (a self-overview). International Journal of Nanomedicine, 2015, 10, 3013.	6.7	32
24	Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors. International Journal of Molecular Sciences, 2015, 16, 22555-22583.	4.1	55
25	Some patterns of metallic nanoparticles' combined subchronic toxicity as exemplified by a combination of nickel and manganese oxide nanoparticles. Food and Chemical Toxicology, 2015, 86, 351-364.	3.6	46
26	Influence of the microheterogeneity and crystallization conditions of the Al-50% Sn alloy on the mechanical properties of phase components of the ingot. Russian Journal of Non-Ferrous Metals, 2014, 55, 505-508.	0.6	7
27	Some Characteristics of Free Cell Population in the Airways of Rats after Intratracheal Instillation of Copper-Containing Nano-Scale Particles. International Journal of Molecular Sciences, 2014, 15, 21538-21553.	4.1	19
28	About the Effect of Heating Temperature on the Structure and Phase Composition of Submicrocrystalline Alloy AMts. Metal Science and Heat Treatment, 2014, 56, 188-191.	0.6	0
29	Measuring the nanohardness of commercial submicrocrystalline aluminum alloys produced by dynamic pressing. Physics of Metals and Metallography, 2014, 115, 523-528.	1.0	8
30	Measurement of young's modulus and hardness of Al-50 wt % Sn alloy phases using nanoindentation. Physics of Metals and Metallography, 2013, 114, 616-622.	1.0	5
31	Sizes and fluorescence of cadmium sulfide quantum dots. Physics of the Solid State, 2013, 55, 624-628.	0.6	29
32	Analysis of the Switching Current Data in Uniaxial Ferroelectrics. Ferroelectrics, 2013, 443, 105-115.	0.6	8
33	Comparative in Vivo Assessment of Some Adverse Bioeffects of Equidimensional Gold and Silver Nanoparticles and the Attenuation of Nanosilver's Effects with a Complex of Innocuous Bioprotectors. International Journal of Molecular Sciences, 2013, 14, 2449-2483.	4.1	67
34	Formation of Nanodomain Structure in Front of the Moving Domain Wall in Lithium Niobate Single Crystal Modified by Proton Exchange. Ferroelectrics, 2013, 442, 82-91.	0.6	16
35	Polarization reversal and jump-like domain wall motion in stoichiometric LiTaO3 produced by vapor transport equilibration. Journal of Applied Physics, 2012, 111, 014101.	2.5	23
36	Influence of adsorbed surface layer on domain growth in the field produced by conductive tip of scanning probe microscope in lithium niobate. Journal of Applied Physics, 2011, 110, .	2.5	55

EKATERINA V SHISHKINA

#	Article	IF	CITATIONS
37	Study of the domain structure evolution in single crystals of relaxor ferroelectric Sr0.61Ba0.39Nb2O6:Ce1. Physics of the Solid State, 2010, 52, 346-351.	0.6	8
38	Shape of Local Hysteresis Loops Measured by Means of Piezoresponse Force Microscopy. Ferroelectrics, 2010, 398, 26-33.	0.6	3
39	Abnormal Domain Evolution in Lithium Niobate with Surface Layer Modified by Cu Ion Implantation. Ferroelectrics, 2010, 399, 49-57.	0.6	11
40	Study of Nanoscale Domain Structure Formation Using Raman Confocal Microscopy. Ferroelectrics, 2010, 398, 91-97.	0.6	20
41	Formation of Self-Assembled Domain Structures in Lithium Niobate Modified by Ar Ions Implantation. Ferroelectrics, 2010, 399, 35-42.	0.6	11
42	Influence of Surface Layers Modified by Proton Exchange on Domain Kinetics of Lithium Niobate. Ferroelectrics, 2008, 374, 14-19.	0.6	22
43	Formation of Nanoscale Domain Structures and Abnormal Switching Kinetics in Lithium Niobate With Surface Layer Modified by Implantation of Copper Ions. Ferroelectrics, 2008, 374, 73-77.	0.6	9
44	Local Study of Polarization Reversal Kinetics in Ferroelectric Crystals Using Scanning Probe Microscopy. Ferroelectrics, 2008, 374, 26-32.	0.6	13
45	Study of Domain Structure Kinetics in SBN Crystals Using Optical Methods. Ferroelectrics, 2008, 374, 33-40.	0.6	11
46	Nanoscale Domain Effects in Ferroelectrics. Formation and Evolution of Self-Assembled Structures in LiNbO ₃ and LiTaO ₃ . Ferroelectrics, 2007, 354, 145-157.	0.6	19
47	Formation of Self-Similar Surface Nano-Domain Structures in Lithium Niobate Under Highly Nonequilibrium Conditions. Ferroelectrics, 2006, 341, 85-93.	0.6	52
48	Deaging in Gd2(MoO4)3 by cyclic motion of a single planar domain wall. Journal of Applied Physics, 2005, 98, 074106.	2.5	10
49	Fast and Superfast Motion of Ferroelectric Domain Boundaries. Integrated Ferroelectrics, 2003, 59, 1493-1503.	0.7	9
50	X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate and lithium niobate. Applied Physics Letters, 2002, 80, 1037-1039.	3.3	3
51	Domain Shape in Congruent and Stoichiometric Lithium Tantalate. Ferroelectrics, 2002, 269, 195-200.	0.6	47
52	Domain Kinetics in Congruent and Stoichiometric Lithium Niobate. Ferroelectrics, 2002, 269, 189-194.	0.6	16
53	Barkhausen Jumps During Domain Wall Motion in Ferroelectrics. Ferroelectrics, 2002, 267, 347-353.	0.6	30
54	Kinetic approach for describing the fatigue effect in ferroelectrics. Physics of the Solid State, 2002, 44, 2145-2150.	0.6	13

EKATERINA V SHISHKINA

#	Article	IF	CITATIONS
55	Kinetics of domain structure and switching currents in single crystals of congruent and stoichiometric lithium tantalate. Physics of the Solid State, 2002, 44, 2151-2156.	0.6	11
56	Polarization reversal in congruent and stoichiometric lithium tantalate. Applied Physics Letters, 2001, 79, 3146-3148.	3.3	56
57	Kinetics of fatigue effect. Integrated Ferroelectrics, 2001, 33, 117-132.	0.7	5
58	Barkhausen jumps in the motion of a single ferroelectric domain wall. Physics of the Solid State, 2001, 43, 1128-1131.	0.6	6
59	Temperature Behavior of the Order Parameter in Pb[sub 5]Ge[sub 3]O[sub 11]. Physics of the Solid State, 2001, 43, 1952.	0.6	3
60	Recent achievements in domain engineering in lithium niobate and lithium tantalate. Ferroelectrics, 2001, 257, 191-202.	0.6	63
61	Kinetic approach to fatigue phenomenon in ferroelectrics. Journal of Applied Physics, 2001, 90, 6312-6315.	2.5	47
62	Nanoscale backswitched domain patterning in lithium niobate. Applied Physics Letters, 2000, 76, 143-145.	3.3	125
63	Formation and evolution of charged domain walls in congruent lithium niobate. Applied Physics Letters, 2000, 77, 3636-3638.	3.3	95
64	Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic applications. Ferroelectrics, 2000, 236, 129-144.	0.6	75
65	Smooth and jump-like dynamics of the plane domain wall in gadolinium molybdate. Ferroelectrics, 1999, 222, 323-331.	0.6	14
66	Fatigue in epitaxial lead zirconate titanate films. Physics of the Solid State, 1997, 39, 609-610.	0.6	4